167
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Survival-apoptosis associated signaling in GNE myopathy-cultured myoblasts

, , , , , , , & show all
Pages 249-257 | Received 23 Jan 2014, Accepted 06 Aug 2014, Published online: 16 Dec 2014
 

Abstract

GNE Myopathy (GNEM) is a neuromuscular disorder caused by mutations in the GNE gene. It is a slowly progressive distal and proximal muscle weakness sparing the quadriceps. In this study, we applied our model of mutated M743T GNE enzyme skeletal muscle-cultured myoblasts and paired healthy controls to depict the pattern of signaling proteins controlling survival and/or apoptosis of the PI3K/AKT, BCL2, ARTS/XIAP pathways, examined the effects of metabolic changes/stimuli on their expression and activation, and their potential role in GNEM. Immunoblot analysis of the GNEM myoblasts indicated a notable increased level of activated PTEN and PDK1 and a trend of relative differences in the expression and activation of the examined signaling molecules with variability among the cultures. ANOVA analysis showed a highly significant interaction between the level of PTEN and the patients groups. In parallel, the interaction between the level of BCL2, BAX and PTEN with the specific PI3K/AKT inhibitor-LY294002 was highly significant for BCL2 and nearly significant for PTEN and BAX. The pattern of the ARTS/XIAP signaling proteins of GNEM and the paired controls was variable, with no significant differences between the two cell types. The response of the GNEM cells to the metabolic changes/stimuli: serum depletion and insulin challenge, as indicated by expression of selected signaling proteins, was variable and similar to the control cells. Taken together, our observations provide a clearer insight into specific signaling molecules influencing growth and survival of GNEM muscle cells.

Declaration of interest

The authors report no declaration of interests. These studies have been supported in part by a grant from the Neuromuscular Disease Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.