122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Micromechanical and physical stability analysis of an irradiated poly (lactic-co-glycolic acid) donut-shaped minitablet device for intraocular implantation

, , , , &
Pages 1186-1203 | Received 13 May 2011, Accepted 24 Aug 2011, Published online: 16 Feb 2012
 

Abstract

This study pragmatically characterized the micromechanical and physical stability of a poly(lactic-co-glycolic acid) (PLGA)-based ganciclovir (GCV)-loaded donut-shaped minitablet (DSMT) device for intraocular implantation. Thermal and spectroscopic analysis was performed on various drug-polymer permutations. Porositometric profiles were quantitatively analyzed coupled with qualitatively SEM imaging. The tensile strength (TS) and fracture energy (FE) of the device was also determined pre- and post-γ-sterilization. Inimitably, chemometric and molecular modeling provided a supportive confirmatory tool for establishing fundamental correlative suppositions between the transitioned surface morphology and the micromechanical stability after γ-irradiation. Isotherm plot volumes ranged between −0.028 ± 0.022 and 0.110 ± 0.005 m2/g for pre- and post-sterilized devices, respectively, revealing a microporous alteration in porosity. Pre-sterilized devices had larger pores (BJHa = 286.22 vs. 192.49 Å) and lower FE (151.301 ± 6.089 N/m) and TS (26.396 ± 1.062 N) values while sterilized devices had crystalline matrices that facilitated the superiorly controlled drug release kinetcs obtained. DSC thermograms displayed the characteristic disordered crystallization of GCV and hydration exotherms resulting from ionization during γ-irradiation. FTIR spectrograms showed fingerprint molecular imprints of GCV and axial stretching of hybridized carbons of PLGA with no subversive drug-polymer interactions after γ-irradiation. Integration of the results inveterately revealed that compression and subsequent γ-irradiation of the device affected desirable micromechanical and solid-state stability behavior.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.