181
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Development of innovative oil-core self-organized nanovesicles prepared with chitosan and lecithin using a 23 full-factorial design

, , , &
Pages 769-778 | Received 09 May 2013, Accepted 20 Jul 2013, Published online: 02 Sep 2013
 

Abstract

The aim of this study was to develop innovative nanosystems with isopropyl myristate as the oil core of self-assembly nanovesicles constituted of chitosan and lecithin using a 23 factorial design. The factors analyzed were chitosan (X1, levels 4 and 8 mg/ml), oil (X2, levels 10 and 20 mg/ml) and lecithin (X3, levels 4 and 8 mg/ml). The responses evaluated were diameter, zeta potential, pH, viscosity, and backscattering analysis. The bioavailability was evaluated after oral administration of clozapine free and nanoencapsulated in rats. The diameter ranged from 0.348 to 1.5 µm for F2 (X1, 4; X2, 10; X3, 8 mg/ml) and F7 (X1, 8; X2, 20; X3, 4 mg/ml), respectively. Laser diffractometry analysis revealed only one diameter population for all batches. Zeta potential was positive, being influenced by X1 and X2/X3 association. Viscosity values were dependent on the X1 and X2 concentrations used. A structure proposed for the nanosystem consists of chitosan forming the hydrophilic shell layer that protects the core comprised of lecithin and the hydrophobic groups of oil. The AUC0–∞ was almost 3 times higher with the clozapine nanoencapsuted in relation to free drug. It was developed a new nanosystem which is able of improving the absorption of drugs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.