94
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The effect of self-assembly conditions on the size of di- and tri-block copolymer micelles: solicitation from response surface methodology

&
Pages 957-965 | Received 09 May 2014, Accepted 02 Aug 2014, Published online: 27 Aug 2014
 

Abstract

The objective of this study was to assess the application of Response Surface Methodology in defining the effect of self-assembly condition on the average diameter of polymeric micelles. Di- and tri-block copolymers of poly(ethylene oxide)-b-poly(α-benzylcarboxylate-ε-caprolactone) (PEO-PBCL) and PBCL-b-poly(ethylene glycol)-b-PBCL (PBCL–PEG–PBCL) were synthesized through ring opening polymerization of α-benzyl-ɛ-carboxylate using MePEO or dihydroxy PEG as initiator, respectively. Polymeric micelles were formed through solubilization of block copolymers in acetone followed by drop-wise addition of this solution to water. Polymer concentration was changed and the intensity mean diameter of self-assembled structures was measured by dynamic light scattering. The experimental data were fitted to a mathematical model. The experimental conditions leading to the production of micelles of certain size (30, 60 or 90 nm for tri-block and 30 nm for di-block copolymers) was predicted. A good match between predicted and experimental data was observed. The results showed it would be possible to obtain micelles of certain size using block copolymers of different molecular weights or obtain micelles of different size at a given block copolymer molecular weight, by manipulating the polymer concentration. These observations show reproducible micelles of defined average diameter can be prepared by co-solvent evaporation by controlling the used polymer concentration.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.