387
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions?

, &
Pages 499-510 | Received 08 Dec 2014, Accepted 17 Feb 2015, Published online: 16 Mar 2015
 

Abstract

Ensuring the physical stability of drug nanosuspensions prepared via wet media milling has been a challenge for pharmaceutical scientists. The aim of this study is to assess the combined use of non-ionic cellulosic polymers and anionic surfactants in stabilizing multiple drug nanosuspensions. Particle size of five drugs, i.e. azodicarbonamide (AZD), fenofibrate (FNB), griseofulvin (GF), ibuprofen (IBU) and phenylbutazone (PB) was reduced separately in an aqueous solution of hydroxypropyl cellulose (HPC) with/without sodium dodecyl sulfate (SDS) via a stirred media mill. Laser diffraction, scanning electron microscopy, thermal analysis, rheometry and electrophoresis were used to evaluate the breakage kinetics, storage stability, electrostatic repulsion and stabilizer adsorption. Without SDS, drug particles exhibited aggregation to different extents; FNB and GF particles aggregated the most due to low zeta potential and insufficient steric stabilization. Although aggregation in all milled suspensions was reduced due to HPC–SDS combination, FNB and IBU showed notable growth during 7-day storage. It is concluded that the combination of non-ionic cellulosic polymers and anionic surfactants is generally viable for ensuring the physical stability of wet-milled drug nanosuspensions, provided that the surfactant concentration is optimized to mitigate the Ostwald ripening, whereas cellulosic polymers alone may provide stability for some drug suspensions.

Declaration of interest

The authors report financial support through Grant EEC-0540855 from the U.S. National Science Foundation (NSF) Engineering Research Center (ERC) for Structured Organic Particulate Systems (SOPS). Nisso America Inc. is also noted for the kind donation of the HPC samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.