266
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Methy-sens Comet assay and DNMTs transcriptional analysis as a combined approach in epigenotoxicology

, , &
Pages 64-70 | Received 07 Oct 2014, Accepted 25 Nov 2014, Published online: 18 Dec 2014
 

Abstract

Epigenotoxicology needs simple and fast tools to assess xenobiotic epigenetic load. This work proposes a comet assay modification designed to detect global methylation changes (Methy-sens Comet) through enzymatic digestion with two restriction enzymes (HpaII, MspI). In the methylation-sensitive protocol tested for repeatability on A549 cells, nickel chloride induced hypermethylation and decitabine-induced hypomethylation. A concomitant assessment of DNA methyltransferases (DNMTs) genes transcriptional levels has been performed, to implement a multifunctional approach to epigenotoxicology. Methy-sens Comet showed a general good repeatability and sensitivity to methylation changes while DNMTs transcriptional levels granted additional proof of xenobiotic-induced impairment of methylome maintenance.

Acknowledgements

We would like to thank Dr Mirca Lazzaretti and Mrs Antonietta Cirasolo for technical support.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 527.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.