12
Views
0
CrossRef citations to date
0
Altmetric
Papers

Caspase-3 activation is required for reovirus-induced encephalitis in vivo

, &
Pages 306-317 | Received 15 Apr 2010, Accepted 04 Jun 2010, Published online: 13 Jul 2010
 

Abstract

Reovirus infection of neonatal mice provides a classic experimental system for understanding the molecular pathogenesis of central nervous system (CNS) viral infection. CNS tissue injury, caused by many human neurotropic viruses, including herpes viruses and West Nile virus, is associated with caspase-dependent apoptotic neuronal cell death. We have previously shown that reovirus-induced CNS tissue injury results from apoptosis and is associated with activation of both death-receptor and mitochondrial apoptotic pathways culminating in the activation of the downstream effector caspase, caspase-3. In order to directly investigate the role of caspase-3 in virus-induced neuronal death and CNS tissue injury during encephalitis, we have compared the pathogenesis of reovirus CNS infection in mice lacking the caspase-3 gene (caspase-3 (−/−)) to syngeneic wild-type mice. Prior studies of antiapoptotic treatments for reovirus-infected mice have indicated that protection from reovirus-induced neuronal injury can occur without altering the viral titer in the brains of infected mice. We now show that reovirus infection of caspase-3 (−/−) mice was associated with dramatic reduction in severity of CNS tissue injury, decreased viral antigen and titer in the brain, and enhanced survival of infected mice. Following intracerebral inoculation, the authors also show that virus spread from the brain to the eyes in reovirus-infected caspase-3 (−/−) mice, indicating that viral spread was intact in these mice. Examination of brains of long-term survivors of reovirus infection among caspase-3 (−/−) mice showed that these mice eventually clear their CNS viral infection, and do not manifest residual or delayed CNS tissue injury.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.