2,365
Views
73
CrossRef citations to date
0
Altmetric
Nanotechnology

Nanotechnologies in regenerative medicine

&
Pages 144-156 | Published online: 25 May 2010
 

Abstract

Nanotechnology offers promising perspectives in biomedical research as well as in clinical practice. To cover some of the latest nanotechnology trends in regenerative medicine, this review will focus on the use of nanomaterials for tissue engineering and cell therapy. Nanofibrous materials that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for the skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes and cytokines. As a new approach, nanofibers prepared by using industrial scale needleless technology have been recently introduced, and their use as scaffolds to treat spinal cord injury or as cell carriers for the regeneration of the injured cornea is the subject of much current study. Cell therapy is a modern approach of regenerative medicine for the treatment of various diseases or injuries. To follow the migration and fate of transplanted cells, superparamagnetic iron oxide nanoparticles have been developed for cell labeling and non-invasive MRI monitoring of cells in the living organism, with successful applications in, e.g, the central nervous system, heart, liver and kidney and also in pancreatic islet and stem cell transplantation.

Acknowledgements

We thank James Dutt for critical reading of the manuscript. This work was supported through the grants: AVOZ 503 90 703, 1M0538, LC 554, GAAV IAA 500 390 902, the EC FP6 project ENINET (LSHM-CT-2005-019063), GAČR 203/09/1242, KAN201110651, P108/10/1560, KAN200520804.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 344.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.