176
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Palpation simulator with stable haptic feedback

, &
Pages 211-217 | Received 08 Jan 2014, Accepted 12 Oct 2014, Published online: 25 Dec 2014
 

Abstract

Background: The main difficulty in constructing palpation simulators is to compute and to generate stable and realistic haptic feedback without vibration. When a user haptically interacts with highly non-homogeneous soft tissues through a palpation simulator, a sudden change of stiffness in target tissues causes unstable interaction with the object. Material and methods: We propose a model consisting of a virtual adjustable damper and an energy measuring element. The energy measuring element gauges energy which is stored in a palpation simulator and the virtual adjustable damper dissipates the energy to achieve stable haptic interaction. Results: To investigate the haptic behavior of the proposed method, impulse and continuous inputs are provided to target tissues. If a haptic interface point meets with the hardest portion in the target tissues modeled with a conventional method, we observe unstable motion and feedback force. However, when the target tissues are modeled with the proposed method, a palpation simulator provides stable interaction without vibration. Conclusion: The proposed method overcomes a problem in conventional haptic palpation simulators where unstable force or vibration can be generated if there is a big discrepancy in material property between an element and its neighboring elements in target tissues.

Acknowledgement

This research was supported by the Dual Use Program Cooperation Center (12-DU-EE-03). This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HI14C0765).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 344.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.