57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decorin promotes myogenic differentiation and mdx mice therapeutic effects after transplantation of rat adipose-derived stem cells

, , , , , , , , & show all
Pages 877-886 | Received 18 Oct 2011, Accepted 07 Apr 2012, Published online: 04 Jun 2012
 

Abstract

Background aims. Adipose-derived stem cells (ADSC) have been considered as attractive candidates for the treatment of Duchenne muscular dystrophy (DMD), but the rate of ADSC myogenesis is very low. Myostatin (Mstn), a negative regulator of myogenesis, is known to be responsible for limiting skeletal muscle regeneration. Decorin could bind Mstn and deactivate it. Decorin has been shown to improve myogenic differentiation in mdx mice. We hypothesized that inhibition of Mstn by using decorin may ameliorate myogenic differentiation of ADSC. Methods. Rat ADSC were transfected with the lentivirus-containing green fluorescence protein (GFP) and human decorin gene. The transfected ADSC were induced by 5-azacytidine (5-AzaC). The rates of myogenic differentiation and adipogenesis were detected. The transfected ADSC were injected into mdx mice and the expression of Mstn and decorin detected by Western blot. Dystrophin was detected after transfected ADSC transplantation by immunofluorescence staining and Western blot. Serum creatine kinase (CK) and histologic changes were also evaluated. Results. The optimal multiplicity of infection of ADSC was 10. Decorin improved muscle mass. In accordance with the increased muscle mass, dystrophin expression increased. Following the level of decorin increase, the Mstn expression decreased. Furthermore, serum CK and histologic changes in centrally nucleated fiber (CNF) decreased. Conclusions. Improved myogenic differentiation of ADSC was observed by using decorin. This process was probably the result of decorin inhibiting Mstn. A new method of DMD therapy combining Mstn inhibition (using decorin) and ADSC transplantation is probably feasible.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30370510, 30170337, 30400322, 30870851), CMB fund (4209347), the Key Project of the State Ministry of Public Health (2001321) and the Fok Ying Tung Education Foundation (91029), and Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (2006BAI05A07).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.