245
Views
31
CrossRef citations to date
0
Altmetric
Original Article

A metabolomic approach in an experimental model of hypoxia-reoxygenation in newborn piglets: urine predicts outcome

, , , , , , , , , , , & show all
Pages 134-137 | Received 17 Aug 2010, Published online: 27 Sep 2010
 

Abstract

Perinatal asphyxia is one of the leading causes of morbidity and mortality in the neonatal period. Response to oxygen treatment is unpredictable and the optimum concentration of oxygen in neonatal resuscitation is still a matter of debate among neonatologists. A metabolomic approach was used to characterize the metabolic profiles of newborn hypoxic-reoxygenated piglets. Urine samples were collected from newborn piglets (n = 40) undergoing hypoxia followed by resuscitation at different oxygen concentrations (ranging from 18% to 100%) and analyzed by 1H NMR spectroscopy. Despite reoxygenation 7 piglets, out of 10 which became asystolic, did not respond to resuscitation. Profiles of the 1H NMR spectra were submitted to unsupervised (principal component analysis) and supervised (partial least squares-discriminant analysis) multivariate analysis. The supervised analyses showed differences in the metabolic profile of the urine collected before the induction of hypoxia between survivors and deaths. Metabolic variations were observed in the urine of piglets treated with different oxygen concentrations comparing T0 (basal value) and end of the experiment (resuscitation). Some of the individual metabolites discriminating between these groups were urea, creatinine, malonate, methylguanidine, hydroxyisobutyric acid. The metabolomic approach appears a promising tool for investigating newborn hypoxia over time, for monitoring the response to the treatment with different oxygen concentrations, and might lead to a tailored management of the disorder.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.