78
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe

&
Pages 235-245 | Published online: 02 Nov 2011
 

Abstract

The measurement of electrical impedance of skin using surface electrodes permits the assessment of changes in local properties of the skin and can be used in the detection of tumors. The sensitivity of this technique depends mainly on the geometry of the probe and the size of the tumor. In this article, the impedance method was used to estimate the sensitivity of a tetrapolar probe in detecting small regions of increased conductivity in a stratified model of human skin. The impedance method was used to model the potential distribution using fasorial analysis to solve the node equations of the equivalent circuit. Interpolation was applied to reduce discretization error. The skin was modeled as a three-layer structure with different conductivity and permittivity obtained from the literature. A tumor was modeled as a small volume with admittivity four times higher than the normal tissue. Sensitivity calculation was made as a function of electrode diameter and separation, tumor size, and excitation frequency. The simulations indicated that by inserting a one square millimeter tumor in the epidermis, the load impedance to the current source varies about 1% while the transfer impedance varied 8%. The sensitivity also increases nonlinearly with increasing tumor area and thickness. Additionally, it was found that the sensitivity of the transfer impedance has a maximum value when the electrodes are separated by 1.8 mm. The results show that transfer impedance measurements of the skin may detect small skin tumors with a reasonable sensitivity by using an appropriate tetrapolar probe.

Acknowledgements

The authors would like to thank the University of Santa Catarina State for the financial support.

Declaration of interestThe authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.