120
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Assessment of nuclear abnormalities in exfoliated cells from the oral epithelium of mobile phone users

, &
Pages 98-102 | Received 28 Nov 2012, Accepted 24 Feb 2013, Published online: 28 May 2013
 

Abstract

Transmission and reception of mobile telephony signals take place through electromagnetic wave radiation, or electromagnetic radiofrequency fields, between the mobile terminal and the radio base station. Based on reports in the literature on adverse effects from exposure to this type of radiation, the objective of this study was to evaluate the genotoxic and cytotoxic potential of such exposure, by means of the micronucleus test on exfoliated cells from the oral epithelium. The sample included 45 individuals distributed in 3 groups according to the amount of time in hours per week (t) spent using mobile phones: group I, t > 5 h; group II, t > 1 h and ≤ 5 h; and group III, t ≤ 1 h. Cells from the oral mucosa were analyzed to assess the numbers of micronuclei, broken egg structures and degenerative nuclear abnormalities indicative of apoptosis (condensed chromatin, karyorrhexis and pyknosis) or necrosis (karyolysis in addition to these changes). The occurrences of micronuclei and degenerative nuclear abnormalities did not differ between the groups, but the number of broken egg (structures that may be associated with gene amplification) was significantly greater in the individuals in group I (p < 0.05).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.