95
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Influence of electromagnetic field on soliton-mediated charge transport in biological systems

Pages 123-132 | Received 27 Jan 2015, Accepted 27 Mar 2015, Published online: 22 Jun 2015
 

Abstract

It is shown that electromagnetic fields affect dynamics of Davydov's solitons which provide charge transport processes in macromolecules during metabolism of the system. There is a resonant frequency of the field at which it can cause the transition of electrons from bound soliton states into delocalised states. Such decay of solitons reduces the effectiveness of charge transport, and, therefore, inhibits redox processes. Solitons radiate their own electromagnetic field of characteristic frequency determined by their average velocity. This self-radiated field leads to synchronization of soliton dynamics and charge transport processes, and is the source of the coherence in the system. Exposition of the system to the oscillating electromagnetic field of the frequency, which coincides with the eigen-frequency of solitons can enhance eigen-radiation of solitons, and, therefore, will enhance synchronization of charge transpor, stimulate the redox processes and increase coherence in the system. Electromagnetic oscillating field causes also ratchet phenomenon of solitons, i.e., drift of solitons in macromolecules in the presence of unbiased periodic field. Such additional drift enhances the charge transport processes. It is shown that temperature facilitates the ratchet drift. In particular, temperature fluctuations lead to the lowering of the critical value of the intensity and period of the field, above which the drift of solitons takes place. Moreover, there is a stochastic resonance in the soliton dynamics in external electromagnetic fields. This means, that there is some optimal temperature at which the drift of solitons is maximal.

Acknowledgments

This paper is devoted to the memory of my great friend Emilio Del Giudice. The author expresses her sincere thanks to L. Cruzeiro, A. Eremko, B. Piette and W. Zakrzewski for fruitful collaboration.

Declaration of interest

The authors report that they have no conflicts of interest. The research has been done under the partial support from the Fund of Fundamental Research of the National Academy of Sciences of Ukraine.

Notes

* In the memory of Emilio Del Giudice

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.