886
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Regulation of skeletal muscle stem cells through epigenetic mechanisms

, &
Pages 334-342 | Published online: 16 Apr 2011
 

Abstract

Quiescent adult skeletal muscle stem cells (satellite cells) are the main players of myogenesis assuring the possibility of growth and regeneration of the muscle tissue throughout adult life. The environmental stimuli that activate satellite cells induce their proliferation, leading on one hand to self-renewal and maintenance of the muscle stem cell reservoir, and on the other hand to the production of progenitor cells that further proliferate, differentiate, and fuse to form new muscle fibers. Hence, satellite cells constitute a perfect system to study the transitions involved in stem cell differentiation. The multistep process of myogenesis is orchestrated by specific regulatory proteins, such as Pax3/Pax7 or members of the MyoD family of transcription factors. However, findings published over the past few years indicate that epigenetic mechanisms, such as covalent modification of histones, DNA methylation, or regulation of gene expression by microRNAs, also critically repress, maintain, or induce the muscle-specific transcriptional program during myogenesis. These studies have increased our understanding of how the information encoding the muscle lineage is molecularly controlled.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.