320
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Perfluorononanoic acid disturbed the metabolism of lipid in the liver of streptozotocin-induced diabetic rats

, , &
Pages 622-627 | Received 16 Mar 2015, Accepted 03 May 2015, Published online: 09 Jun 2015
 

Abstract

Most studies on the liver toxicity of perfluorinated compounds (PFCs) are focused on healthy individuals, whereas the effects of PFCs on individuals with diabetes mellitus have not been fully characterized. This study aimed to investigate the acute exposure of perfluorononanoic acid (PFNA) on the metabolism of lipid in the liver of streptozotocin-induced diabetic rats. Male diabetic rats were orally dosed by gavage for 7 days with 0, 0.2, 1 and 5 mg/kg/day PFNA. The contents of lipid, the activities of enzyme, the expressions of protein in the liver and the serum parameters were detected. The results indicate that dose-dependent accumulation of triglyceride and total cholesterol occurred in the livers of diabetic rats after PFNA treatment. PFNA increased the activities of lipid synthetase, fatty acid synthease, glucose-6-phosphate dehydrogenase and decreased the activity of lipolytic enzyme, hepatic lipase, in the liver of diabetic rats. The changes of the isocitrate dehydrogenase, malicenzyme and lipoprotein lipase were not obvious. The expressions of protein related to lipid homeostasis, liver X receptor α and apolipoprotein E, were decreased after PFNA administration. Exposure to PFNA also increased the activity of serum alanine aminotransferase in diabetic rats. In conclusion, this study discloses that exposure to PFNA impacts on enzymes and proteins related to liver lipid metabolism and lead to obvious accumulation of lipid in the liver of diabetic rats, which may be responsible for hepatotoxicity of this compound in individuals with diabetes mellitus.

Declaration of interest

This research was supported by the National Natural Science Foundation of China (Grant #21107078), China Postdoctoral Science Foundation (Grant #2012M510793) and Academic technology leaders Foundation of SuZhou University (Grant #2014XJHB02). The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.