264
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigations of kinetic interactions between lipid emulsions, hydroxyethyl starch or dextran and organophosphorus compounds

, , &
Pages 918-922 | Received 13 Aug 2013, Accepted 14 Oct 2013, Published online: 08 Nov 2013
 

Abstract

Context Numerous studies demonstrated a limited efficacy of clinically used oximes in case of poisoning by various organophosphorus compounds. A broad spectrum oxime antidote covering all organophosphorus nerve agents and pesticides is still missing and effective (bio-)scavengers have not yet been marketed. Objective. The interactions of the available and clinically approved hydroxyethyl starch, dextran and lipid emulsions with organophosphorus nerve agents and pesticides were investigated in order to provide an in vitro base for the evaluation of these compounds in human organophosphorus poisoning. Materials and methods. The degradation kinetics of organophosphorus compounds by the glucose derivatives and lipid emulsions were investigated with an acetylcholinesterase inhibition assay. Results. The incubation of organophosphorus compounds with TRIS-Ca2+ buffer resulted in a time-dependent degradation of the nerve agents with half-lives of 42 min for cyclosarin, 49 min for sarin, 99 min for tabun, 107 min for soman 19 h for malaoxon and 54 h for VX. In contrast, incubation with all tested compounds resulted in a stabilisation of the organophosphorus compounds. Discussion. Our results suggest that binding of lipophilic organophosphorus compounds could result in a reduced spontaneous and enzyme-induced degradation of the toxic compounds. Conclusion. High dose lipid emulsions and glucose derivatives stabilised organophosphorus compounds in vitro.

Declaration of interest

The authors report no declarations of interest.

The study was funded by the German Ministry of Defence. The design, performance, data interpretation and manuscript writing was under the control of the authors and has not been influenced by the German Ministry of Defence.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,501.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.