204
Views
3
CrossRef citations to date
0
Altmetric
Basic Research

Reversal of lipophilic weak bases using pH gradient acidic centre liposomes: demonstration of effect in dabigatran-induced anticoagulation

, , , , &
Pages 428-433 | Received 07 Nov 2015, Accepted 10 Feb 2016, Published online: 29 Mar 2016
 

Abstract

Introduction: Liposomes have recently emerged as rational vehicles for drug detoxification. Modification of the core pH may further enhance the ability of liposomes to sequester lipophilic toxins that are weak bases. Dabigatran, a reversible inhibitor of thrombin, has been widely promoted as a novel oral anticoagulant. As a lipophilic weak-base, it provides a rational target for reversal with acidic-centred liposomal preparations. The present study tests the hypothesis that acidic centre liposomes will reverse dabigatran induced anticoagulation. Method: Following enteric dabigatran dosing in vitro assessment of thrombin clotting times (TCT) was undertaken in rabbit plasma spiked with incremental liposome concentrations. Tail vein bleeding was assessed following intravenous liposome injection in rats after enteric dabigatran administration. Results: Liposomes achieved reversal of TCT to baseline at low levels of thrombin inhibition, and partial reversal of TCT at higher levels. Liposomes completely reversed the effects of dabigatran on rat tail vein bleeding time (134.0 (6.7) s liposomes vs. 410 (37.8) s control; p < 0.01). Conclusion: Dabigatran-induced coagulopathy was reversed in vitro and in vivo by acidic-centred liposomes. pH-modified liposomes are a promising investigational entity in the antidotal treatment of pharmacologic weak bases that are lipid soluble at physiologic pH.

Acknowledgements

The authors wish to acknowledge the assistance on Miss A and Miss S Cave and Master J Fisher in the setup of the blinded experiments.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,501.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.