199
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of different nanoparticles with a potential use for drug delivery in neuropsychiatric disorders

, , , &
Pages 44-51 | Published online: 12 Sep 2011
 

Abstract

Objectives. Nanoparticles are promising tools for targeted delivery of drugs in the treatment of different diseases, including neuropsychiatric disorders. However, they need to be carefully characterised for any adverse effects which may occur in their presence. In this study, we evaluated the applicability of nanoparticles that belong to three different groups: (i) aggregates from amphiphilic diblock copolymers composed of poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-phenyl-2-oxazoline) (PPhOx) in different ratios, (ii) stabilised polymeric micelles (SPM) based on poly(ethylene oxide)-b-poly(propylene oxide)-bpoly(ethylene oxide) (PEO-PPO-PEO) and (iii) star-like polymer with poly(acrylic acid) arms and branched polystyrene interior (PSPAA). Methods. Using cultured human neural progenitor cells, we characterised six nanoparticles (POx-9, POx-23 and POx-46 – the polyoxazoline group, SPM-F38 and SPMMS – the SPM group, and PSPAA – the star-like polymer) for neurotoxicity and effect on neurodevelopmental genes. Nanoparticles ability to activate complement system in blood was assessed by ELISA. Results. None of the nanoparticles exhibited neurotoxicity. However, POx-9, POx-23, POx-46 and SPM-F38 activated complement system. POx-9 and SPM-F38 resulted in inhibition of expression of 19 and 26 out of 30 tested neurodevelopmental genes, respectively. Conclusions. Considering the properties of the studied nanoparticles, only PSPAA and SPMMS can be used at high concentrations for drug delivery without compromising neurogenesis and neurodevelopment, and activation of complement system.

Acknowledgements

None

Declaration of interest The authors have no conflicts of interest, and are solely responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 341.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.