190
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments

, , , &
Pages 687-699 | Received 04 Oct 2010, Accepted 07 Dec 2010, Published online: 24 Jan 2011
 

Abstract

Measurement of the surface area of airborne nanoparticles as administered to an experimental subject is critical for characterizing exposures during inhalation experiments. A filter-based surface area measurement methodology is described herein that allows for such determinations. Krypton gas adsorption was used to determine total particle surface area. Track-etched polycarbonate 0.4 μm pore filters were chosen as the collection substrate for metal oxide particles due to their highly reproducible surface areas and low background weights. The subject nanomaterials included two different batches of ultrafine TiO2, TiO2 nanorods, and SiO2. The instrument detection limit for surface area was 200 cm2 (0.02 m2). Ninety percent confidence interval estimates of method accuracy were 17.7–23.5% with a point estimate of 20.8%. The filter-based surface area measurement strategy is demonstrated to be a viable sampling and analysis methodology that provides much needed physical characterization information of particles as administered in an animal inhalation chamber.

Acknowledgments

The authors would like to thank Emanuele Cauda and Arthur L. Miller for their thorough review of this manuscript and Jared Cumpston and Eleanor Wade for assistance with sampling of the nanomaterials, as well as Matthew G. Duling for assistance with measurements. Financial support of this project was provided by the US Government.

Declaration of interest: The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.