412
Views
52
CrossRef citations to date
0
Altmetric
Research Article

The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles

, , , , , , , & show all
Pages 562-575 | Received 04 Oct 2010, Accepted 17 May 2011, Published online: 10 Jun 2011
 

Abstract

Increasing production and application of metallic nanomaterials are likely to result in the release of these particles into the environment. These released nanoparticles may enter into the lungs and the central nervous system (CNS) directly through inhalation, which therefore poses a potential risk to human health. Herein, we focus on the systemic toxicity and potential influence on the neurotransmitter secretion of intranasally instilled copper nanoparticles (23.5 nm) at three different doses. Copper nanoparticle-exposed mice exhibit pathological lesions at different degrees in certain tissues and especially in lung tissue as revealed by histopathology and transmission electron microscopy (TEM) observations. Inductively-coupled plasma mass spectrometry (ICP-MS) results show that the liver, lung and olfactory bulb are the main tissues in which the copper concentrations increased significantly after exposure to a higher level of Cu nanoparticles (40 mg/kg of body weight). The secretion levels of various neurotransmitters changed as well in some brain regions, especially in the olfactory bulb. Our results indicate that the intranasally instilled copper nanoparticles not only cause the lesions where the copper accumulates, but also affect the neurotransmitter levels in the brain.

Declaration of interest: This work was financially supported by National Basic Research Program of China (973 Program) from the Ministry of Science and Technology (2011CB933401), the National Natural Science Foundation of China (10975040) and the Knowledge Innovation Program of the Chinese Academy of Sciences. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.