304
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Three-dimensional hydrogel constructs for exposing cells to nanoparticles

, , &
Pages 394-403 | Received 14 Sep 2012, Accepted 25 Mar 2013, Published online: 24 Apr 2013
 

Abstract

In evaluating nanoparticle risks to human health, there is often a disconnect between results obtained from in vitro toxicology studies and those from in vivo activity, prompting the need for improved methods to rapidly assess the hazards of engineered nanomaterials. In vitro studies of nanoparticle toxicology often rely on high doses and short exposure periods due to the difficulty of maintaining monolayer cell cultures over extended time periods as well as the difficulty of maintaining nanoparticle dispersions within the culture environment. In this work, tissue-engineered constructs are investigated as a platform for providing doses of nanoparticles over different exposure periods to cells within a three-dimensional environment that can be tuned to mimic in vivo conditions. Uptake of quantum dots (QDs) by model neural cells was first investigated in a high-dose exposure scenario, resulting in a strong concentration-dependent uptake of carboxyl-functionalised QDs. Poly(ethylene glycol) hydrogel scaffolds with varying mesh sizes were then investigated for their ability to support cell survival and proliferation. Cells were co-encapsulated with carboxyl-functionalised poly(ethylene glycol)-coated QDs at a lower dose than is typical for monolayer cultures. Although the QDs leach from the hydrogel within 24 h, they are also incorporated by cells within the scaffold, enabling the use of these constructs in future studies of cell behaviour and function.

Acknowledgements

E. Mansfield was supported by a National Research Council Postdoctoral Fellowship while this work was conducted. The authors appreciate the assistance of Dr. Roy Geiss with TEM measurements, Dr. Jessica Burger with viscosity measurements and Dr. Stephanie Hume with swelling measurements.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.