660
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats

, , , &
Pages 643-653 | Received 12 Apr 2013, Accepted 12 Jun 2013, Published online: 08 Jul 2013
 

Abstract

There are many uncertainties regarding the hazard of nanosized particles compared to the bulk material of the parent chemical. Here, the authors assess the comparative hazard of two nanoscale (NM-211 and NM-212) and one microscale (NM-213) cerium oxide materials in 28-day inhalation toxicity studies in rats (according to Organisation for Economic Co-operation and Development technical guidelines). All three materials gave rise to a dose-dependent pulmonary inflammation and lung cell damage but without gross pathological changes immediately after exposure. Following NM-211 and NM-212 exposure, epithelial cell injury was observed in the recovery groups. There was no evidence of systemic inflammation or other haematological changes following exposure of any of the three particle types. The comparative hazard was quantified by application of the benchmark concentration approach. The relative toxicity was explored in terms of three exposure metrics. When exposure levels were expressed as mass concentration, nanosized NM-211 was the most potent material, whereas when expression levels were based on surface area concentration, micro-sized NM-213 material induced the greatest extent of pulmonary inflammation/damage. Particles were equipotent based on particle number concentrations. In conclusion, similar pulmonary toxicity profiles including inflammation are observed for all three materials with little quantitative differences. Systemic effects were virtually absent. There is little evidence for a dominant predicting exposure metric for the observed effects.

View correction statement:
Corrigendum

Acknowledgements

The authors like to thank Dr Mark R. Miller for textual editing of the manuscript. This study was part of the OECD Working Party on Manufactured Nanomaterials (WPMN) Sponsorship Programme and funded by the Dutch Ministry of Infrastructures and Environment.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.