486
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Induced T cell cytokine production is enhanced by engineered nanoparticles

, , , &
Pages 11-23 | Received 23 Apr 2013, Accepted 20 Sep 2013, Published online: 21 Nov 2013
 

Abstract

Engineered nanoparticles are widely used in commercial products, and yet due to the paucity of safety information, there are concerns surrounding potential adverse health effects, especially from inhaled nanoparticles and their putative contribution to allergic airway disease. The objective of this study was to investigate whether size or surface chemistry of engineered nanoparticles can influence the immune enhancing properties of these agents on antigen-specific T cell responses. Ovalbumin (OVA)-derived peptides were presented to T cells by either spleen-derived endogenous antigen presenting cells or a mouse dendritic cell (DC) line, DC2.4. In all models, interferon (IFN)-γ and interleukin (IL)-2 production by CD8+ or CD4+ T cells in response to peptide OVA257–264 or OVA323–339, respectively, was measured by flow cytometry. To address the study objective, silica nanoparticles (SNPs) were modified with alkyne-terminated surfaces and appended with polyethylene glycol chains via “click” chemistry. These modified SNPs were resistant to agglomerate in in vitro culture media, suggesting that their modulation of T cell responses is the result of true nanoscale-mediated effects. Under conditions of suboptimal T-cell activation, modified SNPs (up to 10 µg/ml) enhanced the proportion of CD8+, but not CD4+, T cells producing IFN-γ and IL-2. Various functional groups (–COOH, –NH2 and –OH) on modified SNPs enhanced IFN-γ and IL-2 production to different levels, with –COOH SNPs being the most effective. Furthermore, 51 nm –COOH SNPs exhibited a greater enhancing effect on the CD8+ T cell response than other sized particles. Collectively, our results show that modified SNPs can enhance antigen-specific CD8+ T cell responses, suggesting that certain modified SNPs exhibit potential adjuvant-like properties.

Acknowledgements

The authors would like to thank Mr Robert Crawford for flow cytometric analysis.

Declaration of Interest

The authors declare that they have no competing interests. This work is funded by National Institutes of Health Grant RC2 ES018756.

Authors’ contributions

W. C. designed and performed experiments, analyzed the data and wrote the manuscript. Q. Z. synthesized and characterized the particles and contributed to writing the associated sections. B. L. F. K. and G. L. B. helped design the study and reviewed the manuscript. N. E. K. designed the study, oversaw all experimental work and edited the manuscript. All of the authors have read and approved the final manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.