610
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Lung burdens and kinetics of multi-walled carbon nanotubes (Baytubes) are highly dependent on the disaggregation of aerosolized MWCNT

&
Pages 242-252 | Received 03 Mar 2014, Accepted 17 Apr 2014, Published online: 19 May 2014
 

Abstract

Previous repeated inhalation exposure studies on rats with multi-walled carbon nanotubes (MWCNT, Baytubes®) suggested that their pulmonary toxicity was predominated by the morphology and density of the aggregated structure. Evidence of any disintegration of these structures in the lung did not exist. The objective of this study was to study as to which extent the formulation of pristine MWCNT as wet-dispersion changes the morphology of assemblage structures in the presence of disintegrated sub-structures. The focus was on the comparative inhalation dosimetry and kinetics of dry- and wet-dispersed Baytubes to better understand the cause of putative differences in pulmonary toxicity originating from pristine and rigorously formulated MWCNT. Rats were nose-only exposed to dry-dispersed and wet-dispersed Baytubes for 6-h at 25–30 mg/m3. Aerodynamic particle size measurements demonstrate substantial differences in the particle size of dry- (MMAD 2.6 µm) and wet-dispersed (MMAD 0.8 µm) MWCNT. Time-course changes of MWCNT retained in the lung were examined during a post-exposure period of 3 months. Lung burdens were analytically determined in digested lungs using the EC/OC total carbon method. Dosimetry was complemented by light and transmission electron microscopy (TEM) of MWCNT retained in alveolar macrophages (AM). As a result, the initially deposited pulmonary dose of MWCNT was three times higher following wet-dispersed MWCNT at essentially similar inhalation chamber concentrations. The elimination half-time of dry- and wet-dispersed MWCNT was 87 and 46 d, respectively. TEM provided evidence that wet-dispersed MWCNT were inhaled as disintegrated structures with distribution-patterns within the cytoplasm of AMs that differed appreciably from those of dry-dust exposed animals. In summary, this study shows that specialized technical processes to formulate MWCNT may have dramatic consequences on their pulmonary fate and associated toxicity. Such properties can only be revealed by the comparison of pulmonary toxicity with pulmonary (micro-)dosimetry and kinetics.

Acknowledgements

The authors thank Dr. M. Voetz, Bayer Technology Services, for the physical characterization of Baytubes.

Declaration of interest

There is no conflict of interests. Bayer Material Science was a former producer of the Baytubes used in this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.