459
Views
13
CrossRef citations to date
0
Altmetric
ARTICLE

Flaxseed Protects Against Diabetes-Induced Glucotoxicity by Modulating Pentose Phosphate Pathway and Glutathione-Dependent Enzyme Activities in Rats

, , , , , & show all
Pages 339-351 | Published online: 28 Aug 2015
 

ABSTRACT

This study investigated the effects of flaxseed (Linum usitatissimum L.) intake on general metabolism, pentose phosphate pathway (PPP) and glutathione-dependent enzymes in diabetic rats. Diabetes was induced by streptozotocin injection (40 mg/kg, i.p.) and the enzyme activities were determined spectrophotometrically. Diabetic and control rats were divided in two subgroups, one untreated, and one treated with flaxseed (0.714 g/kg body weight/day; orally) for 12 weeks. Flaxseed ameliorated decreased body weight (p < .05) and increased blood glucose (p < .001), triglyceride (p < .001), ALT (p < .001) and AST (p < .001) in diabetic rats. Diabetes resulted in increased glucose-6-phosphate dehydrogenase (G6PD) (p < .05) and decreased glutathione-S-transferase (GST) (p < .01), but unchanged 6-phosphogluconate dehydrogenase (6PGD) and glutathione reductase (GR) in the brain of rats. These alterations were partially improved by flaxseed in comparison to diabetic untreated group (p < .05). G6PD, 6PGD, GR were elevated (p < .001), while GST unchanged in the lung of diabetic untreated group compared to control. Flaxseed partially prevented the increase in 6PGD (p < .05) and GR (p < .01), but unaffected G6PD in the lung of diabetic rats. G6PD (p < .001), 6PGD (p < .05), GR (p < .001) were augmented, while GST showed a significant (p < .001) depletion in the pancreas of diabetic untreated rats compared to control. Diabetic alterations observed in pancreatic enzyme activities were significantly prevented by flaxseed. Furthermore, a remarkable decrease in 6PGD (p < .001) and an increase in G6PD (threefold of control) were found in the lens of diabetic untreated group that were completely prevented by flaxseed (p < .001). Flaxseed has beneficial effects against diabetes-induced glucotoxicity by modulating G6PD, 6PGD, GR and GST activities in tissues.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 213.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.