594
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program

, , , &
Pages 3-9 | Received 02 Dec 2011, Accepted 18 Dec 2011, Published online: 12 Jan 2012
 

Abstract

A predictive model of reproductive toxicity, as observed in rat multigeneration reproductive (MGR) studies, was previously developed using high throughput screening (HTS) data from 36 in vitro assays mapped to 8 genes or gene-sets from Phase I of USEPA ToxCast research program, the proof-of-concept phase in which 309 toxicologically well characterized chemicals were testing in over 500 HTS assays. The model predicted the effects on male and female reproductive function with a balanced accuracy of 80%%. In a theoretical examination of the potential impact of the model, two case studies were derived representing different tiered testing scenarios to: 1) screen-out chemicals with low predicted probability of effect; and 2) screen-in chemicals with a high probability of causing adverse reproductive effects. We define ‘testing cost efficiency’ as the total cost divided by the number of positive chemicals expected in the definitive guideline toxicity study. This would approach $$2.11 M under the current practice. Under case study 1, 22%% of the chemicals were screened-out due to low predicted probability of adverse reproductive effect and a misclassification rate of 12%%, yielding a test cost efficiency of $$1.87 M. Under case study 2, 13%% of chemicals were screened-in yielding a testing cost efficiency of $$1.13 M per test-positive chemical. Applying the model would also double the total number of positives identified. It should be noted that the intention of the case studies is not to provide a definitive mechanism for screening-in or screening-out chemicals or account for the indirect costs of misclassification. The case studies demonstrate the customizability of the model as a tool in chemical testing decision-making. The predictive model of reproductive toxicity will continue to evolve as new assays become available to fill recognized biological gaps and will be combined with other predictive models, particularly models of developmental toxicity, to form an initial tier to an overarching integrated testing strategy.

Acknowledgments

The authors thank the EPA's Office of Pesticide Programs for their review of this manuscript. The authors would also like to thank the government contract support, government contractors, and collaborators of ToxCast. We also thank our Tox21 partners at the NIH Chemical Genomics Center, especially Drs. Menghang Xia and Ruili Huang, for generation of chemical-nuclear receptor interaction data.

Declaration of interest: The authors have no conflicts of interest.

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.