Publication Cover
Mitochondrial DNA Part A
DNA Mapping, Sequencing, and Analysis
Volume 27, 2016 - Issue 6
184
Views
9
CrossRef citations to date
0
Altmetric
Research Article

The efficiency of the translesion synthesis across abasic sites by mitochondrial DNA polymerase is low in mitochondria of 3T3 cells

, , , &
Pages 4390-4396 | Received 04 Aug 2015, Accepted 20 Aug 2015, Published online: 16 Oct 2015
 

Abstract

Translesion synthesis by specialized DNA polymerases is an important strategy for mitigating DNA damage that cannot be otherwise repaired either due to the chemical nature of the lesion. Apurinic/Apyrimidinic (abasic, AP) sites represent a block to both transcription and replication, and are normally repaired by the base excision repair (BER) pathway. However, when the number of abasic sites exceeds BER capacity, mitochondrial DNA is targeted for degradation. Here, we used two uracil-N-glycosylase (UNG1) mutants, Y147A or N204D, to generate AP sites directly in the mtDNA of NIH3T3 cells in vivo at sites normally occupied by T or C residues, respectively, and to study repair of these lesions in their native context. We conclude that mitochondrial DNA polymerase γ (Pol γ) is capable of translesion synthesis across AP sites in mitochondria of the NIH3T3 cells, and obeys the A-rule. However, in our system, base excision repair (BER) and mtDNA degradation occur more frequently than translesion bypass of AP sites.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 6,822.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.