332
Views
27
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Regeneration in, and properties of, extracted peripheral nerve allografts and xenografts

, , &
Pages 122-128 | Accepted 10 Feb 2011, Published online: 20 Jun 2011
 

Abstract

When not enough conventional autologous nerve grafts are available, alternatives are needed to bridge nerve defects. Our aim was to study regeneration of nerves in chemically-extracted acellular nerve grafts from frogs, mice, humans (fresh and stored sural nerve), pigs and rats when defects in rat sciatic nerves were bridged. Secondly, we compared two different extraction procedures (techniques described by Sondell et al. and Hudson et al.) with respect to how efficiently they supported axonal outgrowth, and remaining laminin and myelin basic protein (MBP), after extraction. Isografts (rat) and xenografts (mouse) were transplanted into defects in rat sciatic nerves. Acellular nerve allografts from rats, extracted by the Sondell et al's technique, had an appreciably longer axonal outgrowth based on immunohistochemical staining of neurofilaments, than acellular nerve xenografts except those from the pig. Among acellular xenografts there was considerably longer axonal outgrowth in the grafts from pigs compared with those from humans (fresh), but there were no other differences among the xenografts with respect to axonal outgrowth. Axonal outgrowth in acellular nerve xenografts from mice, extracted by the method described by Sondell et al. was longer than in those extracted by Hudson et al's method, while there was no difference in outgrowth between extracted nerve isografts from rats. Electrophoretic analysis of extracted acellular nerve grafts showed remaining laminin, but not MBP, after both extraction procedures. These preserved laminin and removed MBP in acellular nerve grafts. Such grafts can be used to reconstruct short defects in nerves irrespective of their origin. However, selecting and matching a suitable combination of graft and host species may improve axonal outgrowth.

Acknowledgements

The project was supported by grants from the Swedish Research Council (Medicine and Science), Crafoord's Fund for Medical Research, Konsul Thure Carlsson's Fund for Medical Research, Region Skåne, and funds from Skåne University Hospital, Malmö, Sweden.

Declaration of interest: The authors report no conflicts of interest, except that one of us (LBD) once has received consulting fee from Axogen Inc, US. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.