636
Views
21
CrossRef citations to date
0
Altmetric
Report

Mutations in FUS are the most frequent genetic cause in juvenile sporadic ALS patients of Chinese origin

, , &
Pages 249-252 | Received 10 Nov 2015, Accepted 05 Dec 2015, Published online: 14 Mar 2016
 

Abstract

Juvenile onset ALS is a very rare form of motor neuron disease, with the first symptoms of motor neuron degeneration manifested before 25 years of age. Mutations in the alsin (ALS2), senataxin (SETX), and spatacsin (SPG11) genes have been associated with familial ALS with juvenile onset and slow progression, whereas the genetic architecture of sporadic juvenile ALS remains unclear. We screened mutations in C9orf72, SOD1, FUS, TARDBP, ANG, VCP and PFN1 in 16 juvenile sporadic ALS patients. Four cases (25%) carrying FUS mutations and one individual (6%) harbouring a SOD1 mutation were identified. All cases had an aggressive disease course. Our results suggest that FUS mutations are the most frequent genetic cause in early-onset sporadic ALS patients of Chinese origin. Genetic testing of FUS should be performed in early-onset ALS patients especially those with an aggressive disease course.

Acknowledgements

The authors thank the patients and their families, as well as the healthy control subjects, for their cooperation in this study.

Declaration of interest

The authors declare that they have no actual or potential conflicts of interest.

Supplementary material available online at http://dx.doi.org/10.3109/21678421.2016.1143012

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 478.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.