2,428
Views
92
CrossRef citations to date
0
Altmetric
Review

Trial watch

Dendritic cell-based interventions for cancer therapy

, , , , , , , , , & show all
Article: e25771 | Received 15 Jul 2013, Accepted 16 Jul 2013, Published online: 29 Jul 2013

Abstract

Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.

Introduction

“Dendritic cells” (DCs) is the term introduced in 1973 by the Canadian immunologist Ralph Steinman to describe a small subset of murine splenic cells characterized by a peculiar tree-like morphology (from the Greek “dendron,” meaning tree).Citation1 Setting the stage for a brand new era in immunology, this discovery granted Ralph Steinman the 2011 Nobel Prize for Medicine and Physiology.Citation2-Citation4 Indeed, after an initial lag period, the publication rate of scientific articles dealing with DCs has incessantly grown throughout the last 4 decades, nowadays approximating 4000 units/year (all article types confounded, source http://www.ncbi.nlm.nih.gov/pubmed/). Thus, thanks to the work of several pioneers in the field, such as Anna Karolina Palucka, Jacques Banchereau and others, the unique functional profile of DCs, placing them at the hub of innate and adaptive immune responses, has been characterized with increasing precision.Citation5-Citation21

DCs differentiate from common myeloid bone marrow progenitors and can be found in virtually all tissues, although they accumulate at sites of intense antigen exposure, such as lymphoid organs, the skin as well external and internal mucosae.Citation22-Citation24 Generally, tissue-resident DCs are immature, meaning that they are very efficient at engulfing extracellular material but not at releasing cytokines. In addition immature DCs (iDCs) express (1) MHC class II molecules mostly in the late endosomal compartment; (2) reduced levels of co-stimulatory molecules (e.g., CD40, CD70, CD86, OX40L); and (3) a particular set of chemokine receptors.Citation25 Importantly, in the absence of appropriate maturation stimuli (see below), iDCs present antigens to T cells in the context of inhibitory signals, hence promoting peripheral tolerance.Citation26-Citation28 Such an immunosuppressive response relies on at least two distinct mechanisms, i.e., the deletion of antigen-specific T-cell clones (clonal deletion) and the expansion of CD4+CD25+FOXP3+ regulatory T cells (Tregs).Citation26

Several stimuli can promote the maturation of iDCs, including (but presumably not limited to) microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), immune complexes as well as a wide panel of cytokines and chemokines.Citation5,Citation22,Citation25,Citation29-Citation31 A detailed description of the signal transduction cascades that underpin the maturation of iDCs exceeds the scope of the present Trial Watch and can be found in references Citation24 andCitation32-Citation37 As opposed to their immature counterparts, mature DCs (mDCs) exhibit a limited ability to engulf antigens, but (1) express elevated levels of MHC class II molecules at the cell surface; (2) become capable of migrating toward lymph nodes, owing to the expression of specific chemokine receptors (e.g., CCR7); and (3) secrete high quantities of cytokines/chemokines.Citation24,Citation25 Thus, mDCs are highly efficient at triggering adaptive immune responses, much more than other professional antigen-presenting cells (APCs) including B cells and macrophages.Citation38 Of note, the immunostimulatory potential of DCs is not restricted to the elicitation of cellular immune responses, but also impacts humoral immunity.Citation39-Citation41

DCs exist in several phenotypically and morphologically distinct subsets.Citation10,Citation42-Citation46 Thus, epidermal Langerhans cells efficiently stimulate CD8+ T-cell responses by secreting interleukin (IL)-15, whereas human CD14+ dermal DCs produce high levels of IL-12, thus promoting the differentiation of naïve B cells into antibody-producing plasma cells.Citation10,Citation47 Murine CD8α+ DCs (and their circulating CD141+ human homologs) are highly efficient at cross-presentation,Citation48-Citation52 and appear to be required for optimal responses to foreign (and perhaps tumor-associated) antigens in vivo.Citation53 Plasmacytoid DCs (pDCs) constitute a morphologically peculiar subset of DCs (named after their resemblance to plasma cells) that produces high levels of type I interferon (IFN) upon viral infection, hence eliciting robust TH1 immune responses.Citation54-Citation56 Such an ability–which is shared by “conventional” DCs (cDCs) only in part–presumably originates from the fact that pDCs express a large panel of pattern recognition receptors, including several members of the Toll-like receptor (TLR) family. Thus, as compared with cDCs, pDCs are endowed with a superior ability to detect MAMPs and DAMPs.Citation57-Citation59

Not surprisingly, given their critical position at the interface between innate and adaptive immunity, DCs have been implicated in the pathophysiology of several human disorders, including a wide panel of infective, inflammatory, autoimmune and allergic conditions.Citation23,Citation60-Citation62 Moreover, along with the realization that the immune system is not a mere bystander of oncogenesis, tumor progression and therapeutic responses,Citation63,Citation64 an ever more important role has been ascribed to DCs in the context of natural and therapy-elicited anticancer immunosurveillance.Citation30,Citation65,Citation66 Accumulating preclinical evidence suggests indeed that numeric or functional defects in specific DC subsets facilitate oncogenesis, tumor progression and chemoresistance.Citation30,Citation67-Citation75 In support of this notion, elevated intratumoral levels of mDCs have been associated with improved clinical outcomes in cohorts of patients affected by a large panel of solid neoplasms.Citation32,Citation76-Citation95 Moreover, the accumulation of tolerogenic DCs, including CD208+ mDCs and CD123+ pDCs, within neoplastic lesions has been shown to constitute a negative prognostic factor in multiple clinical settings.Citation32,Citation96-Citation101

During the last decade, along with the recognition of DCs as central regulators of responses as diverse as the induction of peripheral tolerance and the elicitation of robust antigen-specific immunity, the interest of researchers and clinicians for DCs has progressively turned from observational to interventional.Citation23,Citation32,Citation102-Citation104 Thus, dozens–if not hundreds–of strategies have been devised for harnessing the immunogenic potential of DCs as a means to treat several human disorders, including infectious, autoimmune, asthmatic and malignant conditions.Citation9,Citation23,Citation32,Citation61,Citation102,Citation105-Citation109 Perhaps the climax of such an effort has been reached in 2010, when sipuleucel-T, a DC-enriched autologous cell preparation expanded ex vivo in the presence of a prostate acid phosphatase/granulocyte macrophage colony-stimulating factor (PAP/GM-CSF) fusion protein (also known as Provenge®), has been approved by the US FDA for use in patients with asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer.Citation110-Citation112

For illustrative purposes, DC-based anticancer interventions can be classified into 4 major groups, based on the underlying therapeutic principle: (1) reinfusion of unloaded DCs;Citation113-Citation119 (2) reinfusion of DCs loaded ex vivo with preparations enriched to various extents in tumor-associated antigens (TAAs);Citation120-Citation171 (3) in vivo DC loading with TAAs;Citation6,Citation172-Citation184 and (4) DC-derived exosomes.Citation185-Citation188 Interestingly, DCs can be loaded with TAAs ex vivo in several different ways (near to invariably in the presence of appropriate maturation signals) including (1) the exposure of iDCs to autologous cancer cell lysates;Citation120-Citation129,Citation189-Citation192 (2) the incubation of iDCs with recombinant TAAs;Citation130-Citation137 (3) the transfection of DCs with bulk RNA extracted from malignant cells, TAA-coding RNAs or TAA expression vectors;Citation138-Citation163,Citation193,Citation194 and (4) the fusion of DCs with inactivated cancer cells, to form so-called “dendritomes.”Citation127-Citation129,Citation164-Citation171,Citation195 Along similar lines, multiple methods are nowadays available for delivering TAAs to DCs in vivo, including (1) the administration of TAA fused to monoclonal antibodies specific for DC surface markers such as lymphocyte antigen 75 (LY75, also known as CD205 or DEC-205), CD209 (best known as DC-SIGN), C-type lectin domain family 4, member A (CLEC4A, also known as DCIR) and C-type lectin domain family 9, member A (CLEC9A);Citation6,Citation172-Citation182 and (2) the administration of TAAs encapsulated in DC-targeting immunoliposomes.Citation196-Citation198 Importantly, to avoid the establishment of peripheral tolerance, all approaches of in vivo DC targeting require the co-delivery of adequate maturation signals.Citation173,Citation174

Each of these general and specific strategies brings about unique advantages and drawbacks.Citation32,Citation199,Citation200 However, in spite of such a heterogeneity of approaches, all DC-based anticancer interventions aim at eliciting novel (or boosting pre-existing) immune responses against an established neoplasm, de facto representing a therapeutic (as opposed to prophylactic) clinical paradigm. While the antigenic specificity of antitumor responses cannot be controlled when unloaded DCs are employed, one or more TAAs can be specifically targeted with TAA-loaded DCs and DC-derived exosomes. Obviously, both the safety and the efficiency of targeted DC-based interventions are largely influenced by the choice of therapeutically relevant TAAs.Citation201-Citation203 As discussed in detail in several recent reviews,Citation204-Citation209 ideal TAAs should not only be specifically expressed/overexpressed by malignant cells (to avoid, or at least minimize, autoimmune reactions against non-transformed tissues),Citation210-Citation214 but also behave as tumor-rejection antigens (TRAs), i.e., allow for the elicitation of an immune response that results in tumor eradication.Citation215 Of note, multiple relatively unspecific immunostimulatory agents including TLR agonists as well as commonly used vaccine adjuvants operate by promoting the maturation of DCs in vivo. However, as these agents have been the topic of dedicated Trial Watches,Citation216-Citation219 they will not be further discussed here.

As it stands, DCs orchestrate immunological functions as diverse as the establishment of peripheral tolerance and the elicitation of antigen-specific (humoral and cellular) immune responses, de facto occupying a privileged position at the interface between the innate and the adaptive immune system.Citation220 At least in part, this is due to the following DC prerogatives: (1) their preferential accumulation at anatomical sites of continuous antigen exposure; (2) their ability to efficiently take up high amounts of extracellular material, process it and present the corresponding antigenic epitopes to T and B lymphocytes; (3) their propensity to sense a wide panel of exogenous and endogenous signals of danger, and (4) their capacity to mature into multiple, phenotypically and functionally distinct, subsets.Citation23

Along the lines of our monthly Trial Watch series,Citation32,Citation216-Citation219,Citation221-Citation233 here we summarize the latest developments in the use of DCs as a means to elicit novel (or boost existing) anticancer immune responses, focusing on high-impact studies that have been published and clinical trials that have been launched during the last 13 mo.

Literature Update

During the last 13 mo (July 2012 - July 2013, both included), no less than 4,400 articles dealing with DCs have been published in peer-reviewed scientific journals (all types of publication confounded, source http://www.ncbi.nlm.nih.gov/pubmed/). Several of these papers reported the results of recently completed clinical trials assessing the clinical profile of DC-based vaccines in cancer patients. In particular, autologous DCs pulsed ex vivo with purified TAAs or TAA-derived peptides, administered as a standalone intervention or combined with chemo- or immunotherapeutic agents, have been investigated for their ability to elicit tumor-specific immune responses, and hence exert antineoplastic effects, in glioma,Citation234,Citation235 glioblastoma,Citation236,Citation237 multiple myeloma,Citation238 melanoma,Citation239-Citation241 ductal carcinoma in situ,Citation242 and hepatocellular carcinoma patients.Citation243 Along similar lines, the safety and efficacy of autologous DCs loaded ex vivo with tumor lysates, alone or combined with other chemo- or immunotherapeutic regimens, have been tested in cohorts of patients affected by glioblastoma,Citation244 osteosarcoma,Citation245 renal cell carcinoma (RCC),Citation246 and other solid tumors.Citation247 The clinical profile of DCs engineered to express one or several TAAs (alone or together with co-stimulatory molecules such as CD40 ligand, CD70 and a constitutively active variant of TLR4) has been explored in nasopharyngeal carcinoma,Citation248 melanoma,Citation249 small cell lung cancerCitation250 and colorectal carcinoma (CRC) patients.Citation251 Finally, (1) autologous DCs expanded ex vivo (but neither genetically modified nor pulsed with TAAs or tumor lysates) have been tested for their ability to improve the clinical responses of newly diagnosed glioblastoma to induction radiotherapy and maintenance chemotherapy;Citation252 (2) the safety and therapeutic efficacy of autologous DCs loaded ex vivo with the natural killer T (NKT)-cell activator α-galactosylceramide,Citation253,Citation254 given in combination with low-dose lenalidomide (an immunostimulatory agent),Citation255 have been evaluated in patients with asymptomatic myeloma;Citation256 (3) dendritomes have been investigated as an adjuvant therapy upon autologous stem cell transplantation in multiple myeloma patients;Citation257 and (4) the clinical profile of DCs electroporated ex vivo with mRNAs encoding two distinct TAAs (i.e., gp100 and tyrosinase) has been assessed in individual bearing Stage III/IV melanoma.Citation258

Taken together, these studies demonstrate that the administration of multiple distinct DC-based vaccines to cancer patients not only is safe, but also elicits a tumor-specific immune response that—at least in a fraction of patients—translates into objective clinical benefits. Measures aimed at broadening and potentiating vaccination-elicited immune responses, such as the simultaneous targeting of CD8+ and CD4+ T cellsCitation239 or the co-administration of immunostimulatory chemotherapeutic agents (e.g., cyclophosphamide, lenalidomide)Citation65,Citation66 may extend such clinical benefits to a larger patient population. Nonetheless, the identification of surrogate biomarkers of efficacy remains a critical obstacle against the development of DC-based anticancer interventions (see below). Among the abovementioned clinical studies, we have found of particular interest the work by Ten et al., reporting that the administration of a pDC-based vaccine to melanoma patients is safe and exerts robust immunostimulatory functions.Citation240 At least apparently, this is at odds with the association between high intratumoral levels of pDCs and poor disease outcome, which holds true in patients affected by several tumor types.Citation32,Citation96,Citation99,Citation100,Citation259 Thus, contrarily to previous beliefs, it may be possible to harness not only cDCs, but also pDCs, for anticancer immunotherapy.Citation260-Citation263

Along with such an intense wave of clinical investigation, vast efforts have been dedicated to the elucidation of fundamental aspects of the immunobiology and pathophysiological/therapeutic relevance of DCs, including (but not limited to): (1) how DCs regulate cellular and humoral immune responses;Citation264-Citation275 (2) which specific subsets of DCs promote the establishment of tolerance and by which molecular and cellular circuitries;Citation27,Citation276-Citation284 (3) which signals regulate the persistence and maturation of DCs;Citation285-Citation288 (4) how cross-presentation and other DC functions (in particular, antigen uptake, intracellular trafficking and phagosomal degradation) mutually interact with (and hence regulate) each other;Citation289-Citation294 (5) which cellular precursors and which cell-extrinsic and cell-intrinsic signals are required for the development of distinct DC subsets;Citation295-Citation305 (6) what are the phenotypic and functional differences between DC subsets in mice and humans;Citation306-Citation314 (7) which signal transduction pathways underpin the immunomodulatory activity of pDCs in preclinical and clinical settings;Citation96,Citation259-Citation261,Citation315-Citation321 (8) how iDCs and mDCs migrate from tissues to lymph nodes;Citation322-Citation326 and (9) how DCs influence the initiation of autoimmune diabetes,Citation327 HIV-1 infection,Citation328,Citation329 and the response of cancer patients to chemo- and immunotherapeutic regimens.Citation330-Citation332

Of the extensive literature generated during the last 13 mo around the immunobiology and clinical relevance of DCs, we have found of particular interest the works by Idoyaga et al., Vitali et al. and Weber et al., which altogether identified migratory (as opposed to tissue-resident) DCs as major inducers of peripheral tolerance and attributed to chemokine (C-C motif) ligand 21 (CXCL21) a prominent role in this setting.Citation27,Citation281,Citation323 Moreover, by establishing the clinical relevance of the inducible T-cell co-stimulator ligand (ICOSL)-dependent ability of intratumoral pDCs to drive the accumulation of ICOS+ Tregs, Conrad et al., Faget et al. and Yu et al. have provided a strong rationale for the development of immunotherapeutic regimens based on ICOS- or ICOSL-targeting antibodies.Citation96,Citation317,Citation318,Citation320,Citation333,Citation334 Along similar lines, the research group lead by Nadege Goutagny (Léon Bérard Research Center, Lyon, France) has demonstrated that the intratumoral administration of TLR7 agonists can restore the ability of pDCs to drive a robust, Type I IFN-dependent tumor-specific immune response.Citation259 Together with the clinical and preclinical results published by Tel and colleagues,Citation240,Citation260 these results might pave the way toward harnessing the immunostimulatory potential of pDCs for anticancer immunotherapy.Citation261,Citation263,Citation335,Citation336

Update on Clinical Trials

When our latest Trial Watch dealing with DC-based anticancer interventions was submitted for publication to OncoImmunology (July, 2012), official sources listed 114 recent (started after 2008, January 1st) clinical trials (all statuses included) that would assess the safety and efficacy of this immunotherapeutic strategy in cancer patients.Citation32 Of these studies, 35 involved DCs loaded ex vivo with purified TAAs, 34 DCs transfected with tumor-derived RNA or engineered to express TAAs, 22 DCs loaded ex vivo with tumor lysates, 9 dendritomes and 14 other DC-based approaches (including in vivo DC targeting). The status of the vast majority of these trials has remained unchanged since, with the exception of NCT00678119, NCT00683241, NCT00722098 and NCT01373515 (all of which have been completed), as well as NCT01216436 (which has been suspended for funding issues) (source www.clinicaltrials.gov). Preliminary results from NCT01373515, a phase I/IIa clinical trial investigating the safety and therapeutic potential of DCP-001, a preparation of mDCs obtained from an acute myeloid leukemia (AML)-derived cell line that expresses multiple TAAs (so-called “DCOne” cells), have been disclosed at the meeting of the American Society of Clinical Oncology (ASCO) held last June in Chicago (IL, USA). DCP-001 was well tolerated by AML patients, with most common toxicities being moderate (grade < 2) injection site reactions. In addition, DCP-001 not only elicited robust cellular and humoral immune responses, but also was associated with clinical activity (at least to some extent), warranting the initiation of a randomized phase II study.Citation337 To the best of our knowledge, the results of NCT00678119 (testing DCs transfected ex vivo with tumor-derived RNA in prostate cancer patients), NCT00683241 (assessing the clinical profile of DCs pulsed ex vivo with cancer-cell lysates in women affected by ovarian carcinoma) and NCT00722098 (investigating the safety and therapeutic activity of DCs loaded ex vivo with multiple recombinant TAAs in melanoma patients) have not yet been disclosed.

At present (July 2013), official sources list 29 clinical trials launched after 2012, July 1st that would investigate the safety and therapeutic profile of DC-based anticancer interventions (source www.clinicaltrials.gov). The most common approach in this sense is represented by the administration of autologous DCs expanded ex vivo in the presence of one or more recombinant TAAs or peptides thereof (8 trials). Thus, DCs loaded with v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2)-, carcinoembryonic antigen (CEA)-, tumor blood vessel antigen (TBVA)-, or NY-ESO-1- derived peptides are being tested in cohorts of patients affected by breast carcinoma, CRC, melanoma or other solid neoplasms, respectively, either as standalone immunotherapeutic interventions (NCT01730118; NCT01885702) or combined with IL-2 plus autologous lymphocytes genetically engineered to express a NY-ESO-1-targeting T-cell receptor (NCT01697527) or dasatinib, an FDA approved multitarget tyrosine kinase inhibitorCitation338-Citation342 (NCT01876212). Along similar lines, the safety and clinical profile of autologous DCs pulsed ex vivo with not better specified TAAs or TAA-derived peptides, administered in combination with the hitherto experimental TLR3 agonist Hiltonol® 219,343 or with hematopoietic stem cells plus cytotoxic T lymphocytes, are being assessed in advanced or unresectable melanoma patients (NCT01783431) as well as in subjects bearing primary glioblastoma multiforme (NCT01759810) or brain metastases from breast or lung carcinoma (NCT01782274; NCT01782287) ().

Table 1. Clinical trials recently started to assess the safety and therapeutic profile of DC-based vaccines in cancer patients*

Seven trials initiated after 2012, July 1st to assess the safety profile and efficacy of DC-based anticancer interventions involve sipuleucel-T. In particular, sipuleucel-T is being tested (invariably in cohorts of advanced, castration-resistant prostate carcinoma patients) in combination with a wide panel of immunotherapeutic interventions, including: (1) various forms of radiotherapyCitation233,Citation344-Citation346 (NCT01807065, NCT01833208, NCT01818986); (2) ipilimumab, an FDA approved monoclonal antibody targeting cytotoxic T lymphocyte-associated protein 4 (CTLA4)Citation347-Citation350 (NCT01804465; NCT01832870); (3) glycosylated recombinant human IL-7Citation227,Citation230,Citation351,Citation352 (NCT01881867); and (4) a DNA-based anticancer vaccine administered together with recombinant GM-CSFCitation225,Citation227,Citation230,Citation353,Citation354 (NCT01706458). Five studies have recently been launched to investigate the clinical profile of autologous DCs pulsed ex vivo with tumor lysates. This approach is being evaluated, either as a standalone therapeutic intervention or combined with gemcitabine (an immunostimulatory nucleoside analog)Citation65,Citation66,Citation355,Citation356 and/or the FDA-approved TLR7 agonist imiquimod,Citation218,Citation357-Citation361 in cohorts of individuals bearing various forms of sarcoma (NCT01803152, NCT01883518), brain cancer (NCT01808820), melanoma (NCT01753089) or CRC (NCT01671592). Of note, NCT01671592 is an investigational, as opposed to interventional, clinical trial, aimed at following--by magnetic resonance imaging (MRI)--the distribution of DCs loaded ex vivo with tumor lysates upon reinfusion ().

Six distinct clinical trials have been launched after 2012, July 1st to evaluate the safety and efficacy of autologous DCs. Four of these studies involve the reinfusion of autologous DCs expanded ex vivo (in the presence of appropriate maturation signals, but not genetically modified), either as a standalone therapeutic interventions or in combination with Hiltonol®, to individuals affected by Stage III melanoma (NCT01875653), unresectable pancreatic carcinoma (NCT01677962) or other solid neoplasms (NCT01734564; NCT01882946). In addition, two clinical trials are testing the therapeutic profile of DCs genetically engineered to express a GM-CSF-carbonic anhydrase IX fusion protein or an exogenously activatable variant of CD40, given as single agent or in combination with the chemical CD40 activator, respectively, in metastatic RCC (NCT01826877) and castration-resistant prostate carcinoma (NCT01823978) patients. Finally, the efficacy of DCs transfected ex vivo with tumor-derived or TAA-coding RNAs, invariably as standalone therapeutic interventions, is being investigated in 3 clinical trials. In particular, DCs transfected with mRNAs coding for Wilms’ tumor 1 (WT1) or several other leukemia-associated antigens are being explored as a treatment for AML patients undergoing remission (NCT01686334; NCT01734304), whereas DCs electroporated with not better specified mRNAs (presumably bulk mRNAs derived from neoplastic lesions) are being tested in individuals affected by Stage III/IV melanoma (NCT01676779) ().

Concluding Remarks

On 2011, October 3rd, the Nobel Committee for Physiology or Medicine awarded the Nobel Prize in Physiology or Medicine to Bruce Beutler (an American immunologist) and Jules A. Hoffmann (a Luxembourgish-born French biologist), “for their discovery concerning the activation of innate immunity,” and to Ralph Steinman, for “his discovery of the dendritic cell and its role in adaptive immunity.” The Nobel Committee was unaware that Ralph Steinman had deceased from pancreatic cancer 3 d earlier, on September 30th. Although the statute of the Nobel Foundation stipulates that the Noble Prize cannot be awarded posthumously, the Nobel Committee eventually announced that the decision would remain unchanged, as it “was made in good faith.”Citation2-Citation4

Steinman’s discovery, dating back to 1973,Citation1 opened a new exciting era in experimental immunology, inspiring the work of several other research groups worldwide. Such an intense wave of investigation has not yet come to an end, as demonstrated by the high amount of top quality scientific reports published each year around the immunobiology of DCs, providing us with profound insights into the molecular and cellular mechanisms whereby DCs regulate peripheral tolerance and elicit potent adaptive immune responses.Citation5-Citation21 Moreover, starting with the late 1990s, great interest has been raised by the possibility to employ DCs as therapeutic agents. Since then, dozens of different approaches have been devised to harness the immunostimulatory potential of DCs against a wide panel of neoplasms.Citation9,Citation23,Citation32,Citation102,Citation106-Citation108 Nowadays, several of these DC-based anticancer interventions have entered the clinical phase of development. Official sources list indeed more than 120 clinical trials recently (after 2008, January 1st) initiated to test the safety and efficacy of DC-based anticancer immunotherapy (source www.clinicaltrials.gov). Of these studies, 29 were launched during the last 13 mo, indicating that the interest of clinicians in the therapeutic potential of DCs remains very high.

However, with the notable exception of sipuleucel-T, which is currently approved by FDA and other international regulatory agencies for the treatment of metastatic castration-refractory prostate cancer,Citation110,Citation362,Citation363 the clinical progress of DC-based anticancer immunotherapy appears to be problematic, with the majority of strategies failing to proceed beyond Phase II studies. As we have exhaustively discussed in the latest Trial Watch dealing with DC-based anticancer immunotherapeutic regimens,Citation32 several issues may contribute to such a reduced success rate, including (1) the poor availability of clinical grade TLR agonists, calling for the use of surrogate compounds; (2) the fact that only a few TAAs constitute bona fide TRAs; (3) the limited capacity of systemically administered DCs to relocalize to neoplastic lesions; (4) our insufficient understanding of the functional heterogeneity of distinct DC subsets; (5) the absence of reliable molecular or cellular biomarkers that predict the propensity of cancer patients to favorably respond to DC-based interventions; and (6) the lack of appropriate criteria for evaluating clinical responses in immunotherapy-based trials.

We anticipate that circumventing these issues, for instance by means of novel, highly selective TLR agonists that are compatible with clinical applications,Citation364 strategies to specifically direct the migration of DCs toward tumor nests, and surrogate markers of therapeutic efficacy,Citation365-Citation368 will significantly accelerate the development of the next generation of DC-based anticancer immunotherapy.

Abbreviations:
AML=

acute myeloid leukemia

APC=

antigen-presenting cell

ASCO=

American Society of Clinical Oncology

cDC=

conventional DC

CEA=

carcinoembryonic antigen

CLEC=

C-type lectin domain family

CRC=

colorectal carcinoma

CTLA4=

cytotoxic T lymphocyte-associated protein 4

CXCL21=

chemokine (C-C motif) ligand 21

DAMP=

damage-associated molecular pattern

DC=

dendritic cell

ERBB2=

v-erb-b2 erythroblastic leukemia viral oncogene homolog 2

GM-CSF=

granulocyte macrophage colony-stimulating factor

ICOS=

inducible T-cell co-stimulator

ICOSL=

ICOS ligand

iDC=

immature DC

IFN=

interferon

IL=

interleukin

LY75=

lymphocyte antigen 75

MAMP=

microbe-associated molecular pattern

mDC=

mature DC

MRI=

magnetic resonance imaging

NKT=

natural killer T

PAP=

prostate acid phosphatase

pDC=

plasmacytoid DC

RCC=

renal cell carcinoma

TAA=

tumor-associated antigen

TBVA=

tumor blood vessel antigen

TLR=

Toll-like receptor

TRA=

tumor-rejection antigen

Treg=

regulatory T cell

WT1=

Wilms' tumor 1

Acknowledgments

Jitka Fučíková works for Sotio a.s. (Prague, Czech Republic), which is actively investigating DC-based vaccines in both preclinical and clinical settings. Authors are supported by the European Commission (ArtForce); European Research Council (ERC); Agence National de la Recherche (ANR); Ligue Nationale contre le Cancer; Fondation pour la Recherche Médicale (FRM); Institut National du Cancer (INCa); Associazione Italiana per la Ricerca sul Cancro (AIRC); Association pour la Recherche sur le Cancer (ARC), LabEx Immuno-Oncologie; Fondation de France; Fondation Bettencourt-Schueller; AXA Chair for Longevity Research; Cancéropôle Ile-de-France, Paris Alliance of Cancer Research Institutes (PACRI) and Cancer Research for Personalized Medicine (CARPEM).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137:1142 - 62; http://dx.doi.org/10.1084/jem.137.5.1142; PMID: 4573839
  • Lanzavecchia A, Sallusto F, Ralph M. Ralph M. Steinman 1943-2011. Cell 2011; 147:1216 - 7; http://dx.doi.org/10.1016/j.cell.2011.11.040; PMID: 22263224
  • Nussenzweig MC, Mellman I. Ralph Steinman (1943-2011). Nature 2011; 478:460; http://dx.doi.org/10.1038/478460a; PMID: 22031432
  • Mellman I, Nussenzweig M. Retrospective. Ralph M. Steinman (1943-2011). Science 2011; 334:466; http://dx.doi.org/10.1126/science.1215136; PMID: 22034425
  • Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, Fay J, et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci 2003; 987:180 - 7; http://dx.doi.org/10.1111/j.1749-6632.2003.tb06047.x; PMID: 12727638
  • Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O’Bar A, et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 2010; 116:1685 - 97; http://dx.doi.org/10.1182/blood-2010-01-264960; PMID: 20530286
  • Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell 2001; 106:271 - 4; http://dx.doi.org/10.1016/S0092-8674(01)00448-2; PMID: 11509176
  • Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003; 19:225 - 34; http://dx.doi.org/10.1016/S1074-7613(03)00208-5; PMID: 12932356
  • Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev 2007; 220:129 - 50; http://dx.doi.org/10.1111/j.1600-065X.2007.00575.x; PMID: 17979844
  • Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, et al. Dendritic cell subsets in health and disease. Immunol Rev 2007; 219:118 - 42; http://dx.doi.org/10.1111/j.1600-065X.2007.00551.x; PMID: 17850486
  • Banchereau J, Pulendran B, Steinman R, Palucka K. Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries?. J Exp Med 2000; 192:F39 - 44; http://dx.doi.org/10.1084/jem.192.12.F39; PMID: 11120782
  • Berard F, Blanco P, Davoust J, Neidhart-Berard EM, Nouri-Shirazi M, Taquet N, et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 2000; 192:1535 - 44; http://dx.doi.org/10.1084/jem.192.11.1535; PMID: 11104796
  • Li D, Romain G, Flamar AL, Duluc D, Dullaers M, Li XH, et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med 2012; 209:109 - 21; http://dx.doi.org/10.1084/jem.20110399; PMID: 22213806
  • Jotwani R, Palucka AK, Al-Quotub M, Nouri-Shirazi M, Kim J, Bell D, et al. Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies. J Immunol 2001; 167:4693 - 700; PMID: 11591800
  • Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C, et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 2009; 182:6815 - 23; http://dx.doi.org/10.4049/jimmunol.0802008; PMID: 19454677
  • Nouri-Shirazi M, Banchereau J, Bell D, Burkeholder S, Kraus ET, Davoust J, et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol 2000; 165:3797 - 803; PMID: 11034385
  • Rolland A, Guyon L, Gill M, Cai YH, Banchereau J, McClain K, et al. Increased blood myeloid dendritic cells and dendritic cell-poietins in Langerhans cell histiocytosis. J Immunol 2005; 174:3067 - 71; PMID: 15728521
  • Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000; 1:510 - 4; http://dx.doi.org/10.1038/82763; PMID: 11101873
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5:296 - 306; http://dx.doi.org/10.1038/nri1592; PMID: 15803149
  • Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001; 294:1540 - 3; http://dx.doi.org/10.1126/science.1064890; PMID: 11711679
  • Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293:253 - 6; http://dx.doi.org/10.1126/science.1062060; PMID: 11452116
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245 - 52; http://dx.doi.org/10.1038/32588; PMID: 9521319
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419 - 26; http://dx.doi.org/10.1038/nature06175; PMID: 17898760
  • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563 - 604; http://dx.doi.org/10.1146/annurev-immunol-020711-074950; PMID: 23516985
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265 - 77; http://dx.doi.org/10.1038/nrc3258; PMID: 22437871
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685 - 711; http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040; PMID: 12615891
  • Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest 2013; 123:844 - 54; PMID: 23298832
  • Watkins SK, Hurwitz AA. FOXO3: A master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology 2012; 1:252 - 4; http://dx.doi.org/10.4161/onci.1.2.18241; PMID: 22720261
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780 - 8; http://dx.doi.org/10.1038/nrm3479; PMID: 23175281
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51 - 72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008; PMID: 23157435
  • Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, et al. Activation of dendritic cells by tumor cell death. Oncoimmunology 2012; 1:1218 - 9; http://dx.doi.org/10.4161/onci.20428; PMID: 23170286
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Jin P, Han TH, Ren J, Saunders S, Wang E, Marincola FM, et al. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J Transl Med 2010; 8:4; http://dx.doi.org/10.1186/1479-5876-8-4; PMID: 20078880
  • Quah BJ, O’Neill HC. Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med 2005; 9:643 - 54; http://dx.doi.org/10.1111/j.1582-4934.2005.tb00494.x; PMID: 16202211
  • Nakahara T, Moroi Y, Uchi H, Furue M. Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 2006; 42:1 - 11; http://dx.doi.org/10.1016/j.jdermsci.2005.11.004; PMID: 16352421
  • Hammer GE, Ma A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol 2013; 31:743 - 91; http://dx.doi.org/10.1146/annurev-immunol-020711-074929; PMID: 23330953
  • Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 2006; 6:476 - 83; http://dx.doi.org/10.1038/nri1845; PMID: 16691244
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30:1 - 22; http://dx.doi.org/10.1146/annurev-immunol-100311-102839; PMID: 22136168
  • Maldonado-López R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, et al. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189:587 - 92; http://dx.doi.org/10.1084/jem.189.3.587; PMID: 9927520
  • Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999; 96:1036 - 41; http://dx.doi.org/10.1073/pnas.96.3.1036; PMID: 9927689
  • Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315:107 - 11; http://dx.doi.org/10.1126/science.1136080; PMID: 17204652
  • Ueno H, Palucka AK, Banchereau J. The expanding family of dendritic cell subsets. Nat Biotechnol 2010; 28:813 - 5; http://dx.doi.org/10.1038/nbt0810-813; PMID: 20697407
  • Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, et al. Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010; 234:199 - 212; http://dx.doi.org/10.1111/j.0105-2896.2009.00884.x; PMID: 20193020
  • Satpathy AT, Wu X, Albring JC, Murphy KM. Re(de)fining the dendritic cell lineage. Nat Immunol 2012; 13:1145 - 54; http://dx.doi.org/10.1038/ni.2467; PMID: 23160217
  • Palucka K, Banchereau J. Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013; 25:396 - 402; http://dx.doi.org/10.1016/j.coi.2013.05.001; PMID: 23725656
  • Klechevsky E, Banchereau J. Human dendritic cells subsets as targets and vectors for therapy. Ann N Y Acad Sci 2013; 1284:24 - 30; http://dx.doi.org/10.1111/nyas.12113; PMID: 23651190
  • Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008; 29:497 - 510; http://dx.doi.org/10.1016/j.immuni.2008.07.013; PMID: 18789730
  • Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207:1273 - 81; http://dx.doi.org/10.1084/jem.20100348; PMID: 20479115
  • Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1283 - 92; http://dx.doi.org/10.1084/jem.20100223; PMID: 20479118
  • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207:1247 - 60; http://dx.doi.org/10.1084/jem.20092140; PMID: 20479116
  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1261 - 71; http://dx.doi.org/10.1084/jem.20092618; PMID: 20479117
  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12:557 - 69; http://dx.doi.org/10.1038/nri3254; PMID: 22790179
  • Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev 2010; 234:18 - 31; http://dx.doi.org/10.1111/j.0105-2896.2009.00870.x; PMID: 20193009
  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284:1835 - 7; http://dx.doi.org/10.1126/science.284.5421.1835; PMID: 10364556
  • Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1:305 - 10; http://dx.doi.org/10.1038/79747; PMID: 11017101
  • Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 2002; 195:953 - 8; http://dx.doi.org/10.1084/jem.20020045; PMID: 11927638
  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194:863 - 9; http://dx.doi.org/10.1084/jem.194.6.863; PMID: 11561001
  • Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, Fuller AE, et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 2002; 218:74 - 86; http://dx.doi.org/10.1016/S0008-8749(02)00517-8; PMID: 12470615
  • Kadowaki N, Liu YJ. Natural type I interferon-producing cells as a link between innate and adaptive immunity. Hum Immunol 2002; 63:1126 - 32; http://dx.doi.org/10.1016/S0198-8859(02)00751-6; PMID: 12480256
  • Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011; 365:127 - 38; http://dx.doi.org/10.1056/NEJMoa1100066; PMID: 21524210
  • Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol 2003; 3:994 - 1003; http://dx.doi.org/10.1038/nri1249; PMID: 14647481
  • Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. Immunol Rev 2013; 254:170 - 89; http://dx.doi.org/10.1111/imr.12082; PMID: 23772620
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6:715 - 27; http://dx.doi.org/10.1038/nri1936; PMID: 16977338
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331:1565 - 70; http://dx.doi.org/10.1126/science.1203486; PMID: 21436444
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of anticancer agents: Reinstating immunosurveillance. Immunity 2013; Forthcoming http://dx.doi.org/10.1016/j.immuni.2013.06.014
  • Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J, et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 2012; 209:495 - 506; http://dx.doi.org/10.1084/jem.20111413; PMID: 22351930
  • Tomihara K, Guo M, Shin T, Sun X, Ludwig SM, Brumlik MJ, et al. Antigen-specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b(+)Gr-1(+) cells. J Immunol 2010; 184:6151 - 60; http://dx.doi.org/10.4049/jimmunol.0903519; PMID: 20427766
  • Chaput N, Conforti R, Viaud S, Spatz A, Zitvogel L. The Janus face of dendritic cells in cancer. Oncogene 2008; 27:5920 - 31; http://dx.doi.org/10.1038/onc.2008.270; PMID: 18836473
  • Taieb J, Chaput N, Ménard C, Apetoh L, Ullrich E, Bonmort M, et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 2006; 12:214 - 9; http://dx.doi.org/10.1038/nm1356; PMID: 16444265
  • Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729 - 41; http://dx.doi.org/10.1016/j.immuni.2013.03.003; PMID: 23562161
  • Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337:1678 - 84; http://dx.doi.org/10.1126/science.1224922; PMID: 23019653
  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573 - 7; http://dx.doi.org/10.1126/science.1208347; PMID: 22174255
  • Noessner E, Brech D, Mendler AN, Masouris I, Schlenker R, Prinz PU. Intratumoral alterations of dendritic-cell differentiation and CD8(+) T-cell anergy are immune escape mechanisms of clear cell renal cell carcinoma. Oncoimmunology 2012; 1:1451 - 3; http://dx.doi.org/10.4161/onci.21356; PMID: 23243626
  • Sisirak V, Faget J, Vey N, Blay JY, Ménétrier-Caux C, Caux C, et al. Plasmacytoid dendritic cells deficient in IFNα production promote the amplification of FOXP3(+) regulatory T cells and are associated with poor prognosis in breast cancer patients. Oncoimmunology 2013; 2:e22338; http://dx.doi.org/10.4161/onci.22338; PMID: 23482834
  • Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL. The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 2001; 91:2136 - 47; http://dx.doi.org/10.1002/1097-0142(20010601)91:11<2136::AID-CNCR1242>3.0.CO;2-Q; PMID: 11391595
  • Ikeguchi M, Ikeda M, Tatebe S, Maeta M, Kaibara N. Clinical significance of dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 1998; 5:1185 - 9; PMID: 9683832
  • Ishigami S, Natsugoe S, Matsumoto M, Okumura H, Sakita H, Nakashima S, et al. Clinical implications of intratumoral dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 2003; 10:1237 - 40; PMID: 12883687
  • Kakeji Y, Maehara Y, Korenaga D, Tsujitani S, Haraguchi M, Watanabe A, et al. Prognostic significance of tumor-host interaction in clinical gastric cancer: relationship between DNA ploidy and dendritic cell infiltration. J Surg Oncol 1993; 52:207 - 12; http://dx.doi.org/10.1002/jso.2930520402; PMID: 8468980
  • Ishigami S, Aikou T, Natsugoe S, Hokita S, Iwashige H, Tokushige M, et al. Prognostic value of HLA-DR expression and dendritic cell infiltration in gastric cancer. Oncology 1998; 55:65 - 9; http://dx.doi.org/10.1159/000011837; PMID: 9428378
  • Okuyama T, Maehara Y, Kakeji Y, Tsuijitani S, Korenaga D, Sugimachi K. Interrelation between tumor-associated cell surface glycoprotein and host immune response in gastric carcinoma patients. Cancer 1998; 82:1468 - 75; http://dx.doi.org/10.1002/(SICI)1097-0142(19980415)82:8<1468::AID-CNCR6>3.0.CO;2-5; PMID: 9554522
  • Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Xiangming C, Iwashige H, et al. Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer. Cancer Lett 2000; 159:103 - 8; http://dx.doi.org/10.1016/S0304-3835(00)00542-5; PMID: 10974412
  • Saito H, Osaki T, Murakami D, Sakamoto T, Kanaji S, Ohro S, et al. Prediction of sites of recurrence in gastric carcinoma using immunohistochemical parameters. J Surg Oncol 2007; 95:123 - 8; http://dx.doi.org/10.1002/jso.20612; PMID: 17262742
  • Daud AI, Mirza N, Lenox B, Andrews S, Urbas P, Gao GX, et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol 2008; 26:3235 - 41; http://dx.doi.org/10.1200/JCO.2007.13.9048; PMID: 18591558
  • Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132:293 - 301; http://dx.doi.org/10.1007/s00432-006-0075-y; PMID: 16421755
  • Yin XY, Lu MD, Lai YR, Liang LJ, Huang JF. Prognostic significances of tumor-infiltrating S-100 positive dendritic cells and lymphocytes in patients with hepatocellular carcinoma. Hepatogastroenterology 2003; 50:1281 - 4; PMID: 14571719
  • Nakakubo Y, Miyamoto M, Cho Y, Hida Y, Oshikiri T, Suzuoki M, et al. Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer 2003; 89:1736 - 42; http://dx.doi.org/10.1038/sj.bjc.6601331; PMID: 14583778
  • Honig A, Schaller N, Dietl J, Backe J, Kammerer U. S100 as an immunohistochemically-detected marker with prognostic significance in endometrial carcinoma. Anticancer Res 2005; 25:3A 1747 - 53; PMID: 16033094
  • Chang KC, Huang GC, Jones D, Lin YH. Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res 2007; 13:6666 - 72; http://dx.doi.org/10.1158/1078-0432.CCR-07-0504; PMID: 18006767
  • Furihata M, Ohtsuki Y, Sonobe H, Araki K, Ogata T, Toki T, et al. Prognostic significance of simultaneous infiltration of HLA-DR-positive dendritic cells and tumor infiltrating lymphocytes into human esophageal carcinoma. Tohoku J Exp Med 1993; 169:187 - 95; http://dx.doi.org/10.1620/tjem.169.187; PMID: 8248911
  • Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T, et al. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 2003; 104:92 - 7; http://dx.doi.org/10.1002/ijc.10915; PMID: 12532424
  • Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008; 26:4410 - 7; http://dx.doi.org/10.1200/JCO.2007.15.0284; PMID: 18802153
  • Sautès-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, et al. Tumor microenvironment is multifaceted. Cancer Metastasis Rev 2011; 30:13 - 25; http://dx.doi.org/10.1007/s10555-011-9279-y; PMID: 21271351
  • Ladányi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, et al. Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 2007; 56:1459 - 69; http://dx.doi.org/10.1007/s00262-007-0286-3; PMID: 17279413
  • Kobayashi M, Suzuki K, Yashi M, Yuzawa M, Takayashiki N, Morita T. Tumor infiltrating dendritic cells predict treatment response to immmunotherapy in patients with metastatic renal cell carcinoma. Anticancer Res 2007; 27:1137 - 41; PMID: 17465253
  • Conrad C, Gilliet M. Plasmacytoid dendritic cells and regulatory T cells in the tumor microenvironment: A dangerous liaison. Oncoimmunology 2013; 2:e23887; http://dx.doi.org/10.4161/onci.23887; PMID: 23762788
  • Ishigami S, Ueno S, Matsumoto M, Okumura H, Arigami T, Uchikado Y, et al. Prognostic value of CD208-positive cell infiltration in gastric cancer. Cancer Immunol Immunother 2010; 59:389 - 95; http://dx.doi.org/10.1007/s00262-009-0758-8; PMID: 19760221
  • Sandel MH, Dadabayev AR, Menon AG, Morreau H, Melief CJ, Offringa R, et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 2005; 11:2576 - 82; http://dx.doi.org/10.1158/1078-0432.CCR-04-1448; PMID: 15814636
  • Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 2004; 10:7466 - 74; http://dx.doi.org/10.1158/1078-0432.CCR-04-0684; PMID: 15569976
  • Jensen TO, Schmidt H, Møller HJ, Donskov F, Høyer M, Sjoegren P, et al. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 2012; 118:2476 - 85; http://dx.doi.org/10.1002/cncr.26511; PMID: 21953023
  • Labidi-Galy SI, Treilleux I, Goddard-Leon S, Combes JD, Blay JY, Ray-Coquard I, et al. Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. Oncoimmunology 2012; 1:380 - 2; http://dx.doi.org/10.4161/onci.18801; PMID: 22737622
  • Zitvogel L, Kroemer G. Targeting dendritic cell metabolism in cancer. Nat Med 2010; 16:858 - 9; http://dx.doi.org/10.1038/nm0810-858; PMID: 20689548
  • Kreutz M, Tacken PJ, Figdor CG. Targeting dendritic cells--why bother?. Blood 2013; 121:2836 - 44; http://dx.doi.org/10.1182/blood-2012-09-452078; PMID: 23390195
  • Garcia F, Climent N, Guardo AC, Gil C, Leon A, Autran B, et al. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med 2013; 5:166ra2.
  • Lombardi V, Akbari O. Dendritic cell modulation as a new interventional approach for the treatment of asthma. Drug News Perspect 2009; 22:445 - 51; PMID: 20016853
  • Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004; 305:200 - 5; http://dx.doi.org/10.1126/science.1100369; PMID: 15247469
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10:475 - 80; http://dx.doi.org/10.1038/nm1039; PMID: 15122249
  • Nabel GJ. Designing tomorrow’s vaccines. N Engl J Med 2013; 368:551 - 60; http://dx.doi.org/10.1056/NEJMra1204186; PMID: 23388006
  • Gross CC, Wiendl H. Dendritic cell vaccination in autoimmune disease. Curr Opin Rheumatol 2013; 25:268 - 74; http://dx.doi.org/10.1097/BOR.0b013e32835cb9f2; PMID: 23370378
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411 - 22; http://dx.doi.org/10.1056/NEJMoa1001294; PMID: 20818862
  • Higano CS, Small EJ, Schellhammer P, Yasothan U, Gubernick S, Kirkpatrick P, et al. Sipuleucel-T. Nat Rev Drug Discov 2010; 9:513 - 4; http://dx.doi.org/10.1038/nrd3220; PMID: 20592741
  • Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17:3520 - 6; http://dx.doi.org/10.1158/1078-0432.CCR-10-3126; PMID: 21471425
  • Satoh Y, Esche C, Gambotto A, Shurin GV, Yurkovetsky ZR, Robbins PD, et al. Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2002; 2:337 - 49; http://dx.doi.org/10.1046/j.1359-4117.2002.01050.x; PMID: 12440225
  • Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999; 59:4035 - 41; PMID: 10463604
  • Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M, et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 2004; 10:2891 - 901; http://dx.doi.org/10.1158/1078-0432.CCR-03-0380; PMID: 15102698
  • Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, et al. Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 2006; 66:8887 - 96; http://dx.doi.org/10.1158/0008-5472.CAN-05-3448; PMID: 16951206
  • Endo H, Saito T, Kenjo A, Hoshino M, Terashima M, Sato T, et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J Hepatobiliary Pancreat Sci 2012; 19:465 - 75; http://dx.doi.org/10.1007/s00534-011-0457-7; PMID: 21983893
  • You CX, Shi M, Liu Y, Cao M, Luo R, Hermonat PL. AAV2/IL-12 gene delivery into dendritic cells (DC) enhances CTL stimulation above other IL-12 applications: Evidence for IL-12 intracrine activity in DC. Oncoimmunology 2012; 1:847 - 55; http://dx.doi.org/10.4161/onci.20504; PMID: 23162752
  • Bol KF, Tel J, de Vries IJ, Figdor CG. Naturally circulating dendritic cells to vaccinate cancer patients. Oncoimmunology 2013; 2:e23431; http://dx.doi.org/10.4161/onci.23431; PMID: 23802086
  • Nair SK, Snyder D, Rouse BT, Gilboa E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 1997; 70:706 - 15; http://dx.doi.org/10.1002/(SICI)1097-0215(19970317)70:6<706::AID-IJC13>3.0.CO;2-7; PMID: 9096653
  • DeMatos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H. Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol 1998; 68:79 - 91; http://dx.doi.org/10.1002/(SICI)1096-9098(199806)68:2<79::AID-JSO3>3.0.CO;2-H; PMID: 9624036
  • DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol 1998; 185:65 - 74; http://dx.doi.org/10.1006/cimm.1998.1277; PMID: 9636684
  • Fields RC, Shimizu K, Mulé JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A 1998; 95:9482 - 7; http://dx.doi.org/10.1073/pnas.95.16.9482; PMID: 9689106
  • Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 2001; 93:539 - 48; http://dx.doi.org/10.1002/ijc.1365; PMID: 11477558
  • Paczesny S, Beranger S, Salzmann JL, Klatzmann D, Colombo BM. Protection of mice against leukemia after vaccination with bone marrow-derived dendritic cells loaded with apoptotic leukemia cells. Cancer Res 2001; 61:2386 - 9; PMID: 11289101
  • Kokhaei P, Choudhury A, Mahdian R, Lundin J, Moshfegh A, Osterborg A, et al. Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia 2004; 18:1810 - 5; http://dx.doi.org/10.1038/sj.leu.2403517; PMID: 15385926
  • Kokhaei P, Rezvany MR, Virving L, Choudhury A, Rabbani H, Osterborg A, et al. Dendritic cells loaded with apoptotic tumour cells induce a stronger T-cell response than dendritic cell-tumour hybrids in B-CLL. Leukemia 2003; 17:894 - 9; http://dx.doi.org/10.1038/sj.leu.2402913; PMID: 12750703
  • Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86 - 9; http://dx.doi.org/10.1038/32183; PMID: 9510252
  • Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188:1359 - 68; http://dx.doi.org/10.1084/jem.188.7.1359; PMID: 9763615
  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995; 1:1297 - 302; http://dx.doi.org/10.1038/nm1295-1297; PMID: 7489412
  • Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol 1995; 18:86 - 94; http://dx.doi.org/10.1097/00002371-199508000-00002; PMID: 8574470
  • Mayordomo JI, Loftus DJ, Sakamoto H, De Cesare CM, Appasamy PM, Lotze MT, et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183:1357 - 65; http://dx.doi.org/10.1084/jem.183.4.1357; PMID: 8666894
  • Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996; 183:317 - 22; http://dx.doi.org/10.1084/jem.183.1.317; PMID: 8551239
  • Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ Jr.. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161:2094 - 8; PMID: 9725199
  • Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996; 183:87 - 97; http://dx.doi.org/10.1084/jem.183.1.87; PMID: 8551248
  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, et al. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 1997; 15:94 - 103; http://dx.doi.org/10.1002/stem.150094; PMID: 9090785
  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405 - 11; http://dx.doi.org/10.1038/7403; PMID: 10202929
  • Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184:465 - 72; http://dx.doi.org/10.1084/jem.184.2.465; PMID: 8760800
  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 1997; 186:1177 - 82; http://dx.doi.org/10.1084/jem.186.7.1177; PMID: 9314567
  • Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 2000; 60:1028 - 34; PMID: 10706120
  • Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000; 18:1273 - 8; http://dx.doi.org/10.1038/82383; PMID: 11101806
  • Manickan E, Kanangat S, Rouse RJ, Yu Z, Rouse BT. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol 1997; 61:125 - 32; PMID: 9021916
  • Song W, Kong HL, Carpenter H, Torii H, Granstein R, Rafii S, et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 1997; 186:1247 - 56; http://dx.doi.org/10.1084/jem.186.8.1247; PMID: 9334364
  • Tüting T, DeLeo AB, Lotze MT, Storkus WJ. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol 1997; 27:2702 - 7; http://dx.doi.org/10.1002/eji.1830271033; PMID: 9368629
  • Wan Y, Bramson J, Carter R, Graham F, Gauldie J. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum Gene Ther 1997; 8:1355 - 63; http://dx.doi.org/10.1089/hum.1997.8.11-1355; PMID: 9295130
  • McArthur JG, Mulligan RC. Induction of protective anti-tumor immunity by gene-modified dendritic cells. J Immunother 1998; 21:41 - 7; http://dx.doi.org/10.1097/00002371-199801000-00005; PMID: 9456435
  • Ishida T, Chada S, Stipanov M, Nadaf S, Ciernik FI, Gabrilovich DI, et al. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses. Clin Exp Immunol 1999; 117:244 - 51; http://dx.doi.org/10.1046/j.1365-2249.1999.00913.x; PMID: 10444254
  • Tüting T, Steitz J, Brück J, Gambotto A, Steinbrink K, DeLeo AB, et al. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med 1999; 1:400 - 6; http://dx.doi.org/10.1002/(SICI)1521-2254(199911/12)1:6<400::AID-JGM68>3.0.CO;2-D; PMID: 10753065
  • Wan Y, Emtage P, Zhu Q, Foley R, Pilon A, Roberts B, et al. Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transduced dendritic cells. Cell Immunol 1999; 198:131 - 8; http://dx.doi.org/10.1006/cimm.1999.1585; PMID: 10648127
  • Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000; 191:1699 - 708; http://dx.doi.org/10.1084/jem.191.10.1699; PMID: 10811863
  • Ribas A, Butterfield LH, Hu B, Dissette VB, Chen AY, Koh A, et al. Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 2000; 23:59 - 66; http://dx.doi.org/10.1097/00002371-200001000-00008; PMID: 10687138
  • Okada N, Saito T, Masunaga Y, Tsukada Y, Nakagawa S, Mizuguchi H, et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res 2001; 61:7913 - 9; PMID: 11691812
  • Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol 2000; 165:5713 - 9; PMID: 11067929
  • Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6:1011 - 7; http://dx.doi.org/10.1038/79519; PMID: 10973321
  • Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J Neurosurg 2001; 94:474 - 81; http://dx.doi.org/10.3171/jns.2001.94.3.0474; PMID: 11235953
  • Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 2002; 22:2A 613 - 21; PMID: 12014629
  • Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V, et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 2002; 9:787 - 97; http://dx.doi.org/10.1038/sj.cgt.7700499; PMID: 12189529
  • Li M, You S, Ge W, Ma S, Ma N, Zhao C. Induction of T-cell immunity against leukemia by dendritic cells pulsed with total RNA isolated from leukemia cells. Chin Med J (Engl) 2003; 116:1655 - 61; PMID: 14642130
  • Minami T, Nakanishi Y, Izumi M, Harada T, Hara N. Enhancement of antigen-presenting capacity and antitumor immunity of dendritic cells pulsed with autologous tumor-derived RNA in mice. J Immunother 2003; 26:420 - 31; http://dx.doi.org/10.1097/00002371-200309000-00005; PMID: 12973031
  • Schmidt T, Ziske C, Märten A, Endres S, Tiemann K, Schmitz V, et al. Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model. Cancer Res 2003; 63:8962 - 7; PMID: 14695214
  • Jung CW, Kwon JH, Seol JG, Park WH, Hyun JM, Kim ES, et al. Induction of cytotoxic T lymphocytes by dendritic cells pulsed with murine leukemic cell RNA. Am J Hematol 2004; 75:121 - 7; http://dx.doi.org/10.1002/ajh.10471; PMID: 14978690
  • Liu BY, Chen XH, Gu QL, Li JF, Yin HR, Zhu ZG, et al. Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer. World J Gastroenterol 2004; 10:630 - 3; PMID: 14991927
  • Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kühl-Burmeister R, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 2003; 170:5391 - 7; PMID: 12759413
  • Celluzzi CM, Falo LD Jr.. Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J Immunol 1998; 160:3081 - 5; PMID: 9531260
  • Wang J, Saffold S, Cao X, Krauss J, Chen W. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol 1998; 161:5516 - 24; PMID: 9820528
  • Tanaka H, Shimizu K, Hayashi T, Shu S. Therapeutic immune response induced by electrofusion of dendritic and tumor cells. Cell Immunol 2002; 220:1 - 12; http://dx.doi.org/10.1016/S0008-8749(03)00009-1; PMID: 12718934
  • Orentas RJ, Schauer D, Bin Q, Johnson BD. Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine. Cell Immunol 2001; 213:4 - 13; http://dx.doi.org/10.1006/cimm.2001.1864; PMID: 11747351
  • Kjaergaard J, Shimizu K, Shu S. Electrofusion of syngeneic dendritic cells and tumor generates potent therapeutic vaccine. Cell Immunol 2003; 225:65 - 74; http://dx.doi.org/10.1016/j.cellimm.2003.09.005; PMID: 14698141
  • Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, et al. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 2006; 346:829 - 39; http://dx.doi.org/10.1016/j.bbrc.2006.05.193; PMID: 16780801
  • Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbé J, Bonnotte B. Dendritic cell-tumor cell hybrids and immunotherapy: what’s next?. Cytotherapy 2011; 13:774 - 85; http://dx.doi.org/10.3109/14653249.2011.553593; PMID: 21299362
  • Errington F, Jones J, Merrick A, Bateman A, Harrington K, Gough M, et al. Fusogenic membrane glycoprotein-mediated tumour cell fusion activates human dendritic cells for enhanced IL-12 production and T-cell priming. Gene Ther 2006; 13:138 - 49; http://dx.doi.org/10.1038/sj.gt.3302609; PMID: 16136162
  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199:815 - 24; http://dx.doi.org/10.1084/jem.20032220; PMID: 15024047
  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196:1627 - 38; http://dx.doi.org/10.1084/jem.20021598; PMID: 12486105
  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194:769 - 79; http://dx.doi.org/10.1084/jem.194.6.769; PMID: 11560993
  • Adotevi O, Vingert B, Freyburger L, Shrikant P, Lone YC, Quintin-Colonna F, et al. B subunit of Shiga toxin-based vaccines synergize with alpha-galactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J Immunol 2007; 179:3371 - 9; PMID: 17709554
  • Berraondo P, Nouzé C, Préville X, Ladant D, Leclerc C. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res 2007; 67:8847 - 55; http://dx.doi.org/10.1158/0008-5472.CAN-07-0321; PMID: 17875726
  • Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP, et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005; 106:1278 - 85; http://dx.doi.org/10.1182/blood-2005-01-0318; PMID: 15878980
  • Cruz LJ, Tacken PJ, Pots JM, Torensma R, Buschow SI, Figdor CG. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials 2012; 33:4229 - 39; http://dx.doi.org/10.1016/j.biomaterials.2012.02.036; PMID: 22410170
  • Schreibelt G, Klinkenberg LJ, Cruz LJ, Tacken PJ, Tel J, Kreutz M, et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood 2012; 119:2284 - 92; http://dx.doi.org/10.1182/blood-2011-08-373944; PMID: 22234694
  • Tacken PJ, Ginter W, Berod L, Cruz LJ, Joosten B, Sparwasser T, et al. Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood 2011; 118:4111 - 9; http://dx.doi.org/10.1182/blood-2011-04-346957; PMID: 21860028
  • Tacken PJ, Ter Huurne M, Torensma R, Figdor CG. Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking. Eur J Immunol 2012; 42:1989 - 98; http://dx.doi.org/10.1002/eji.201142258; PMID: 22653683
  • Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 2011; 118:6836 - 44; http://dx.doi.org/10.1182/blood-2011-07-367615; PMID: 21967977
  • Wang B. Targeting dendritic cells in situ for breast cancer immunotherapy. Oncoimmunology 2012; 1:1398 - 400; http://dx.doi.org/10.4161/onci.20982; PMID: 23243606
  • García-Vallejo JJ, Unger WW, Kalay H, van Kooyk Y. Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. Oncoimmunology 2013; 2:e23040; http://dx.doi.org/10.4161/onci.23040; PMID: 23525136
  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998; 4:594 - 600; http://dx.doi.org/10.1038/nm0598-594; PMID: 9585234
  • Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 1999; 147:599 - 610; http://dx.doi.org/10.1083/jcb.147.3.599; PMID: 10545503
  • Viaud S, Théry C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next?. Cancer Res 2010; 70:1281 - 5; http://dx.doi.org/10.1158/0008-5472.CAN-09-3276; PMID: 20145139
  • Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 2012; 1:1074 - 83; http://dx.doi.org/10.4161/onci.20897; PMID: 23170255
  • Kandalaft LE, Powell DJ Jr., Chiang CL, Tanyi J, Kim S, Bosch M, et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2013; 2:e22664; http://dx.doi.org/10.4161/onci.22664; PMID: 23482679
  • Fučíková J, Rožková D, Ulčová H, Budinský V, Sochorová K, Pokorná K, et al. Poly I: C-activated dendritic cells that were generated in CellGro for use in cancer immunotherapy trials. J Transl Med 2011; 9:223; http://dx.doi.org/10.1186/1479-5876-9-223; PMID: 22208910
  • Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011; 71:4821 - 33; http://dx.doi.org/10.1158/0008-5472.CAN-11-0950; PMID: 21602432
  • Bercovici N, Haicheur N, Massicard S, Vernel-Pauillac F, Adotevi O, Landais D, et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 2008; 31:101 - 12; http://dx.doi.org/10.1097/CJI.0b013e318159f5ba; PMID: 18157017
  • Lee J, Boczkowski D, Nair S. Programming human dendritic cells with mRNA. Methods Mol Biol 2013; 969:111 - 25; http://dx.doi.org/10.1007/978-1-62703-260-5_8; PMID: 23296931
  • Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, et al. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 2012; 1:287 - 357; http://dx.doi.org/10.4161/onci.18628; PMID: 22737604
  • Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Uchiyama K, et al. Fusions between dendritic cells and whole tumor cells as anticancer vaccines. Oncoimmunology 2013; 2:e24437; http://dx.doi.org/10.4161/onci.24437; PMID: 23762810
  • Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, et al. Liposomal delivery of antigen to human dendritic cells. Vaccine 2003; 21:883 - 90; http://dx.doi.org/10.1016/S0264-410X(02)00536-4; PMID: 12547598
  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 2004; 64:4357 - 65; http://dx.doi.org/10.1158/0008-5472.CAN-04-0138; PMID: 15205352
  • Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, et al. Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine 2007; 25:4757 - 66; http://dx.doi.org/10.1016/j.vaccine.2007.04.029; PMID: 17512099
  • Gilboa E. DC-based cancer vaccines. J Clin Invest 2007; 117:1195 - 203; http://dx.doi.org/10.1172/JCI31205; PMID: 17476349
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7:790 - 802; http://dx.doi.org/10.1038/nri2173; PMID: 17853902
  • Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3:630 - 41; http://dx.doi.org/10.1038/nri1150; PMID: 12974478
  • Finn OJ. Cancer immunology. N Engl J Med 2008; 358:2704 - 15; http://dx.doi.org/10.1056/NEJMra072739; PMID: 18565863
  • Scanlon CS, D’Silva NJ. Personalized medicine for cancer therapy: Lessons learned from tumor-associated antigens. Oncoimmunology 2013; 2:e23433; http://dx.doi.org/10.4161/onci.23433; PMID: 23734304
  • Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010; 30:67 - 101; PMID: 19536865
  • Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol 2011; 18:23 - 34; http://dx.doi.org/10.1128/CVI.00286-10; PMID: 21048000
  • Farkas AM, Finn OJ. Vaccines based on abnormal self-antigens as tumor-associated antigens: immune regulation. Semin Immunol 2010; 22:125 - 31; http://dx.doi.org/10.1016/j.smim.2010.03.003; PMID: 20403708
  • Mocellin S, Pilati P, Nitti D. Peptide-based anticancer vaccines: recent advances and future perspectives. Curr Med Chem 2009; 16:4779 - 96; http://dx.doi.org/10.2174/092986709789909648; PMID: 19929787
  • Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15:5323 - 37; http://dx.doi.org/10.1158/1078-0432.CCR-09-0737; PMID: 19723653
  • Cavallo F, Calogero RA, Forni G. Are oncoantigens suitable targets for anti-tumour therapy?. Nat Rev Cancer 2007; 7:707 - 13; http://dx.doi.org/10.1038/nrc2208; PMID: 17700704
  • Amos SM, Duong CP, Westwood JA, Ritchie DS, Junghans RP, Darcy PK, et al. Autoimmunity associated with immunotherapy of cancer. Blood 2011; 118:499 - 509; http://dx.doi.org/10.1182/blood-2011-01-325266; PMID: 21531979
  • Caspi RR. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 2008; 8:970 - 6; http://dx.doi.org/10.1038/nri2438; PMID: 19008897
  • Kaufman HL, Wolchok JD. Is tumor immunity the same thing as autoimmunity? Implications for cancer immunotherapy. J Clin Oncol 2006; 24:2230 - 2; http://dx.doi.org/10.1200/JCO.2006.05.6952; PMID: 16710020
  • Koon H, Atkins M. Autoimmunity and immunotherapy for cancer. N Engl J Med 2006; 354:758 - 60; http://dx.doi.org/10.1056/NEJMe058307; PMID: 16481646
  • Overwijk WW, Restifo NP. Autoimmunity and the immunotherapy of cancer: targeting the “self” to destroy the “other”. Crit Rev Immunol 2000; 20:433 - 50; http://dx.doi.org/10.1615/CritRevImmunol.v20.i6.10; PMID: 11396680
  • Kroemer G, Zitvogel L. Can the exome and the immunome converge on the design of efficient cancer vaccines?. Oncoimmunology 2012; 1:579 - 80; http://dx.doi.org/10.4161/onci.20730; PMID: 22934249
  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Toll-like receptor agonists for cancer therapy. OncoImmunology 2013; 2; Forthcoming PMID: 23162757
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557 - 76; http://dx.doi.org/10.4161/onci.22428; PMID: 23264902
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Wathelet N, Moser M. Role of dendritic cells in the regulation of antitumor immunity. Oncoimmunology 2013; 2:e23973; http://dx.doi.org/10.4161/onci.23973; PMID: 23734333
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306 - 15; http://dx.doi.org/10.4161/onci.19549; PMID: 22737606
  • Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1:28 - 37; http://dx.doi.org/10.4161/onci.1.1.17938; PMID: 22720209
  • Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, et al. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2:e23082; http://dx.doi.org/10.4161/onci.23082; PMID: 23525565
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323 - 43; http://dx.doi.org/10.4161/onci.22009; PMID: 23243596
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, et al. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2013; 2:e23803; http://dx.doi.org/10.4161/onci.23803; PMID: 23734328
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; http://dx.doi.org/10.4161/onci.24238; PMID: 23762803
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Immunostimulatory cytokines. OncoImmunology 2013; 2:e24850; PMID: 22754768
  • Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, et al. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; http://dx.doi.org/10.4161/onci.22789; PMID: 23482847
  • Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Oncolytic viruses for cancer therapy. OncoImmunology 2013; 2:e24612; http://dx.doi.org/10.4161/onci.24612
  • Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2012; 1:493 - 506; http://dx.doi.org/10.4161/onci.20459; PMID: 22754768
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; http://dx.doi.org/10.4161/onci.1.2.19026; PMID: 22720239
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; http://dx.doi.org/10.4161/onci.23510; PMID: 23687621
  • Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, et al. Trial Watch: Anticancer radioimmunotherapy. OncoImmunology 2013; 2:e25595; http://dx.doi.org/10.4161/onci.24238
  • Iwami K, Shimato S, Ohno M, Okada H, Nakahara N, Sato Y, et al. Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor α2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele. Cytotherapy 2012; 14:733 - 42; PMID: 22424217
  • Akiyama Y, Oshita C, Kume A, Iizuka A, Miyata H, Komiyama M, et al. α-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial. BMC Cancer 2012; 12:623; http://dx.doi.org/10.1186/1471-2407-12-623; PMID: 23270484
  • Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuño MA, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013; 62:125 - 35; http://dx.doi.org/10.1007/s00262-012-1319-0; PMID: 22847020
  • Fong B, Jin R, Wang X, Safaee M, Lisiero DN, Yang I, et al. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS One 2012; 7:e32614; http://dx.doi.org/10.1371/journal.pone.0032614; PMID: 22485134
  • Zahradova L, Mollova K, Ocadlikova D, Kovarova L, Adam Z, Krejci M, et al. Efficacy and safety of Id-protein-loaded dendritic cell vaccine in patients with multiple myeloma--phase II study results. Neoplasma 2012; 59:440 - 9; http://dx.doi.org/10.4149/neo_2012_057; PMID: 22489700
  • Aarntzen EH, De Vries IJ, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, et al. Targeting CD4(+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res 2013; 73:19 - 29; http://dx.doi.org/10.1158/0008-5472.CAN-12-1127; PMID: 23087058
  • Tel J, Aarntzen EH, Baba T, Schreibelt G, Schulte BM, Benitez-Ribas D, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 2013; 73:1063 - 75; http://dx.doi.org/10.1158/0008-5472.CAN-12-2583; PMID: 23345163
  • Oshita C, Takikawa M, Kume A, Miyata H, Ashizawa T, Iizuka A, et al. Dendritic cell-based vaccination in metastatic melanoma patients: phase II clinical trial. Oncol Rep 2012; 28:1131 - 8; PMID: 22895835
  • Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 2012; 118:4354 - 62; http://dx.doi.org/10.1002/cncr.26734; PMID: 22252842
  • Tada F, Abe M, Hirooka M, Ikeda Y, Hiasa Y, Lee Y, et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int J Oncol 2012; 41:1601 - 9; PMID: 22971679
  • Cho DY, Yang WK, Lee HC, Hsu DM, Lin HL, Lin SZ, et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 2012; 77:736 - 44; http://dx.doi.org/10.1016/j.wneu.2011.08.020; PMID: 22120301
  • Himoudi N, Wallace R, Parsley KL, Gilmour K, Barrie AU, Howe K, et al. Lack of T-cell responses following autologous tumour lysate pulsed dendritic cell vaccination, in patients with relapsed osteosarcoma. Clin Transl Oncol 2012; 14:271 - 9; http://dx.doi.org/10.1007/s12094-012-0795-1; PMID: 22484634
  • Florcken A, Kopp J, van Lessen A, Movassaghi K, Takvorian A, Johrens K, et al. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: A clinical phase I/II study. Hum Vaccin Immunother 2013; 9:9; http://dx.doi.org/10.4161/hv.24149; PMID: 23570049
  • Kamigaki T, Kaneko T, Naitoh K, Takahara M, Kondo T, Ibe H, et al. Immunotherapy of autologous tumor lysate-loaded dendritic cell vaccines by a closed-flow electroporation system for solid tumors. Anticancer Res 2013; 33:2971 - 6; PMID: 23780988
  • Chia WK, Wang WW, Teo M, Tai WM, Lim WT, Tan EH, et al. A phase II study evaluating the safety and efficacy of an adenovirus-ΔLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann Oncol 2012; 23:997 - 1005; http://dx.doi.org/10.1093/annonc/mdr341; PMID: 21821548
  • Van Nuffel AM, Benteyn D, Wilgenhof S, Corthals J, Heirman C, Neyns B, et al. Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 2012; 61:1033 - 43; http://dx.doi.org/10.1007/s00262-011-1176-2; PMID: 22159452
  • Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 2013; 62:909 - 18; http://dx.doi.org/10.1007/s00262-013-1396-8; PMID: 23589106
  • Morse MA, Niedzwiecki D, Marshall JL, Garrett C, Chang DZ, Aklilu M, et al. A randomized Phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 2013; http://dx.doi.org/10.1097/SLA.0b013e318292919e; PMID: 23657083
  • Ardon H, Van Gool SW, Verschuere T, Maes W, Fieuws S, Sciot R, et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother 2012; 61:2033 - 44; http://dx.doi.org/10.1007/s00262-012-1261-1; PMID: 22527250
  • Hunn MK, Hermans IF. Exploiting invariant NKT cells to promote T-cell responses to cancer vaccines. Oncoimmunology 2013; 2:e23789; http://dx.doi.org/10.4161/onci.23789; PMID: 23734325
  • Mattarollo SR, Smyth MJ. NKT cell adjuvants in therapeutic vaccines against hematological cancers. Oncoimmunology 2013; 2:e22615; http://dx.doi.org/10.4161/onci.22615; PMID: 23482240
  • Hsu A, Ritchie DS, Neeson P. Are the immuno-stimulatory properties of Lenalidomide extinguished by co-administration of Dexamethasone?. Oncoimmunology 2012; 1:372 - 4; http://dx.doi.org/10.4161/onci.18963; PMID: 22737619
  • Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 2013; 121:423 - 30; http://dx.doi.org/10.1182/blood-2012-06-435503; PMID: 23100308
  • Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19:3640 - 8; http://dx.doi.org/10.1158/1078-0432.CCR-13-0282; PMID: 23685836
  • Aarntzen EH, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, de Wilt JH, et al. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 2012; 18:5460 - 70; http://dx.doi.org/10.1158/1078-0432.CCR-11-3368; PMID: 22896657
  • Le Mercier I, Poujol D, Sanlaville A, Sisirak V, Gobert M, Durand I, et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res 2013; http://dx.doi.org/10.1158/0008-5472.CAN-12-3058; PMID: 23722543
  • Tel J, Schreibelt G, Sittig SP, Mathan TS, Buschow SI, Cruz LJ, et al. Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood 2013; 121:459 - 67; http://dx.doi.org/10.1182/blood-2012-06-435644; PMID: 23212525
  • Tel J, Smits EL, Anguille S, Joshi RN, Figdor CG, de Vries IJ. Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. Blood 2012; 120:3936 - 44; http://dx.doi.org/10.1182/blood-2012-06-435941; PMID: 22966165
  • Tel J, van der Leun AM, Figdor CG, Torensma R, de Vries IJ. Harnessing human plasmacytoid dendritic cells as professional APCs. Cancer Immunol Immunother 2012; 61:1279 - 88; http://dx.doi.org/10.1007/s00262-012-1210-z; PMID: 22294456
  • Aspord C, Leccia MT, Salameire D, Laurin D, Chaperot L, Charles J, et al. HLA-A(*)0201(+) plasmacytoid dendritic cells provide a cell-based immunotherapy for melanoma patients. J Invest Dermatol 2012; 132:2395 - 406; http://dx.doi.org/10.1038/jid.2012.152; PMID: 22696054
  • Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, Sakamoto K, et al. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat Immunol 2013; 14:364 - 71; http://dx.doi.org/10.1038/ni.2541; PMID: 23435120
  • Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 2013; 38:336 - 48; http://dx.doi.org/10.1016/j.immuni.2012.10.018; PMID: 23352235
  • Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 2013; 19:730 - 8; http://dx.doi.org/10.1038/nm.3197; PMID: 23685841
  • Banchereau J, Zurawski S, Thompson-Snipes L, Blanck JP, Clayton S, Munk A, et al. Immunoglobulin-like transcript receptors on human dermal CD14+ dendritic cells act as a CD8-antagonist to control cytotoxic T cell priming. Proc Natl Acad Sci U S A 2012; 109:18885 - 90; http://dx.doi.org/10.1073/pnas.1205785109; PMID: 23112154
  • Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013; 38:970 - 83; http://dx.doi.org/10.1016/j.immuni.2013.04.011; PMID: 23706669
  • Wong JL, Berk E, Edwards RP, Kalinski P. IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res 2013.
  • Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 2013; 38:1164 - 75; http://dx.doi.org/10.1016/j.immuni.2013.02.023; PMID: 23770227
  • Furuta K, Ishido S, Roche PA. Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proc Natl Acad Sci U S A 2012; 109:19380 - 5; http://dx.doi.org/10.1073/pnas.1213868109; PMID: 23129633
  • Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu YJ. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol 2013; 14:172 - 8; http://dx.doi.org/10.1038/ni.2492; PMID: 23222971
  • Lutz MB. How quantitative differences in dendritic cell maturation can direct TH1/TH2-cell polarization. Oncoimmunology 2013; 2:e22796; http://dx.doi.org/10.4161/onci.22796; PMID: 23525517
  • Clausen BE, Girard-Madoux MJ. IL-10 control of dendritic cells in the skin. Oncoimmunology 2013; 2:e23186; http://dx.doi.org/10.4161/onci.23186; PMID: 23802070
  • Mandaric S, Walton SM, Rülicke T, Richter K, Girard-Madoux MJ, Clausen BE, et al. IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence. PLoS Pathog 2012; 8:e1002846; http://dx.doi.org/10.1371/journal.ppat.1002846; PMID: 22876184
  • Coquet JM, Ribot JC, Bąbała N, Middendorp S, van der Horst G, Xiao Y, et al. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med 2013; 210:715 - 28; http://dx.doi.org/10.1084/jem.20112061; PMID: 23547099
  • Volpi C, Fallarino F, Pallotta MT, Bianchi R, Vacca C, Belladonna ML, et al. High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway. Nat Commun 2013; 4:1852; http://dx.doi.org/10.1038/ncomms2874; PMID: 23673637
  • Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13:832 - 42; http://dx.doi.org/10.1038/ni.2376; PMID: 22842346
  • Han D, Walsh MC, Cejas PJ, Dang NN, Kim YF, Kim J, et al. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity 2013; 38:1211 - 22; http://dx.doi.org/10.1016/j.immuni.2013.05.012; PMID: 23791643
  • Jellison ER, Turner MJ, Blair DA, Lingenheld EG, Zu L, Puddington L, et al. Distinct mechanisms mediate naive and memory CD8 T-cell tolerance. Proc Natl Acad Sci U S A 2012; 109:21438 - 43; http://dx.doi.org/10.1073/pnas.1217409110; PMID: 23236165
  • Vitali C, Mingozzi F, Broggi A, Barresi S, Zolezzi F, Bayry J, et al. Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood 2012; 120:1237 - 45; http://dx.doi.org/10.1182/blood-2011-09-379776; PMID: 22760781
  • Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012; 72:3664 - 76; http://dx.doi.org/10.1158/0008-5472.CAN-11-2791; PMID: 22628427
  • Oh J, Wu N, Baravalle G, Cohn B, Ma J, Lo B, et al. MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. J Exp Med 2013; 210:1069 - 77; http://dx.doi.org/10.1084/jem.20122695; PMID: 23712430
  • Aguilera-Montilla N, Chamorro S, Nieto C, Sánchez-Cabo F, Dopazo A, Fernández-Salguero PM, et al. Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood 2013; 121:e108 - 17; http://dx.doi.org/10.1182/blood-2012-07-445106; PMID: 23430108
  • Zietara N, Łyszkiewicz M, Puchałka J, Pei G, Gutierrez MG, Lienenklaus S, et al. Immunoglobulins drive terminal maturation of splenic dendritic cells. Proc Natl Acad Sci U S A 2013; 110:2282 - 7; http://dx.doi.org/10.1073/pnas.1210654110; PMID: 23345431
  • Kim SJ, Gregersen PK, Diamond B. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. J Clin Invest 2013; 123:823 - 33; PMID: 23298838
  • Wan CK, Oh J, Li P, West EE, Wong EA, Andraski AB, et al. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells. Immunity 2013; 38:514 - 27; http://dx.doi.org/10.1016/j.immuni.2013.02.011; PMID: 23453633
  • Gatto D, Wood K, Caminschi I, Murphy-Durland D, Schofield P, Christ D, et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol 2013; 14:446 - 53; http://dx.doi.org/10.1038/ni.2555; PMID: 23502855
  • Segura E, Durand M, Amigorena S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 2013; 210:1035 - 47; http://dx.doi.org/10.1084/jem.20121103; PMID: 23569327
  • Cohn L, Chatterjee B, Esselborn F, Smed-Sörensen A, Nakamura N, Chalouni C, et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med 2013; 210:1049 - 63; http://dx.doi.org/10.1084/jem.20121251; PMID: 23569326
  • Chatterjee B, Smed-Sörensen A, Cohn L, Chalouni C, Vandlen R, Lee BC, et al. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 2012; 120:2011 - 20; http://dx.doi.org/10.1182/blood-2012-01-402370; PMID: 22791285
  • Hoffmann E, Kotsias F, Visentin G, Bruhns P, Savina A, Amigorena S. Autonomous phagosomal degradation and antigen presentation in dendritic cells. Proc Natl Acad Sci U S A 2012; 109:14556 - 61; http://dx.doi.org/10.1073/pnas.1203912109; PMID: 22908282
  • Li C, Buckwalter MR, Basu S, Garg M, Chang J, Srivastava PK. Dendritic cells sequester antigenic epitopes for prolonged periods in the absence of antigen-encoding genetic information. Proc Natl Acad Sci U S A 2012; 109:17543 - 8; http://dx.doi.org/10.1073/pnas.1205867109; PMID: 23045695
  • Segura E, Amigorena S. Identification of human inflammatory dendritic cells. Oncoimmunology 2013; 2:e23851; http://dx.doi.org/10.4161/onci.23851; PMID: 23762786
  • Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K, Inaba K, et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 2013; 38:943 - 57; http://dx.doi.org/10.1016/j.immuni.2013.04.006; PMID: 23623382
  • Welner RS, Bararia D, Amabile G, Czibere A, Benoukraf T, Bach C, et al. C/EBPα is required for development of dendritic cell progenitors. Blood 2013; 121:4073 - 81; http://dx.doi.org/10.1182/blood-2012-10-463448; PMID: 23547051
  • Naik SH, Perié L, Swart E, Gerlach C, van Rooij N, de Boer RJ, et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 2013; 496:229 - 32; http://dx.doi.org/10.1038/nature12013; PMID: 23552896
  • Sathe P, Vremec D, Wu L, Corcoran L, Shortman K. Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 2013; 121:11 - 9; http://dx.doi.org/10.1182/blood-2012-02-413336; PMID: 23053574
  • Beisner DR, Langerak P, Parker AE, Dahlberg C, Otero FJ, Sutton SE, et al. The intramembrane protease Sppl2a is required for B cell and DC development and survival via cleavage of the invariant chain. J Exp Med 2013; 210:23 - 30; http://dx.doi.org/10.1084/jem.20121072; PMID: 23267013
  • Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 2012; 37:1050 - 60; http://dx.doi.org/10.1016/j.immuni.2012.11.001; PMID: 23177320
  • Bauer T, Zagórska A, Jurkin J, Yasmin N, Köffel R, Richter S, et al. Identification of Axl as a downstream effector of TGF-β1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med 2012; 209:2033 - 47; http://dx.doi.org/10.1084/jem.20120493; PMID: 23071254
  • Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Wumesh KC, Albring JC, et al. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 2012; 490:502 - 7; http://dx.doi.org/10.1038/nature11531; PMID: 22992524
  • Greter M, Helft J, Chow A, Hashimoto D, Mortha A, Agudo-Cantero J, et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 2012; 36:1031 - 46; http://dx.doi.org/10.1016/j.immuni.2012.03.027; PMID: 22749353
  • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 2012; 13:753 - 60; http://dx.doi.org/10.1038/ni.2360; PMID: 22729249
  • Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh CE, et al. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. J Exp Med 2013; 210:31 - 40; http://dx.doi.org/10.1084/jem.20121076; PMID: 23267016
  • Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T cell responses. Blood 2013; http://dx.doi.org/10.1182/blood-2013-04-495424; PMID: 23794066
  • Meixlsperger S, Leung CS, Rämer PC, Pack M, Vanoaica LD, Breton G, et al. CD141+ dendritic cells produce prominent amounts of IFN-α after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 2013; 121:5034 - 44; http://dx.doi.org/10.1182/blood-2012-12-473413; PMID: 23482932
  • Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012; 37:60 - 73; http://dx.doi.org/10.1016/j.immuni.2012.04.012; PMID: 22795876
  • Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P, et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 2012; 209:1153 - 65; http://dx.doi.org/10.1084/jem.20112675; PMID: 22615130
  • Seré K, Baek JH, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 2012; 37:905 - 16; http://dx.doi.org/10.1016/j.immuni.2012.07.019; PMID: 23159228
  • Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 2012; 119:6052 - 62; http://dx.doi.org/10.1182/blood-2012-01-406967; PMID: 22442345
  • Roothans D, Smits E, Lion E, Tel J, Anguille S. CD56 marks human dendritic cell subsets with cytotoxic potential. Oncoimmunology 2013; 2:e23037; http://dx.doi.org/10.4161/onci.23037; PMID: 23524451
  • Lindenberg JJ, van de Ven R, Lougheed SM, Zomer A, Santegoets SJ, Griffioen AW, et al. Functional characterization of a STAT3-dependent dendritic cell-derived CD14(+) cell population arising upon IL-10-driven maturation. Oncoimmunology 2013; 2:e23837; http://dx.doi.org/10.4161/onci.23837; PMID: 23734330
  • Haniffa M, Collin M, Ginhoux F. Identification of human tissue cross-presenting dendritic cells: A new target for cancer vaccines. Oncoimmunology 2013; 2:e23140; http://dx.doi.org/10.4161/onci.23140; PMID: 23802067
  • van de Laar L, van den Bosch A, Boonstra A, Binda RS, Buitenhuis M, Janssen HL, et al. PI3K-PKB hyperactivation augments human plasmacytoid dendritic cell development and function. Blood 2012; 120:4982 - 91; http://dx.doi.org/10.1182/blood-2012-02-413229; PMID: 23091295
  • Weigert A, Weichand B, Sekar D, Sha W, Hahn C, Mora J, et al. HIF-1α is a negative regulator of plasmacytoid DC development in vitro and in vivo. Blood 2012; 120:3001 - 6; http://dx.doi.org/10.1182/blood-2012-03-417022; PMID: 22936665
  • Faget J, Bendriss-Vermare N, Gobert M, Durand I, Olive D, Biota C, et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res 2012; 72:6130 - 41; http://dx.doi.org/10.1158/0008-5472.CAN-12-2409; PMID: 23026134
  • Conrad C, Gregorio J, Wang YH, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res 2012; 72:5240 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-12-2271; PMID: 22850422
  • Sisirak V, Faget J, Gobert M, Goutagny N, Vey N, Treilleux I, et al. Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res 2012; 72:5188 - 97; http://dx.doi.org/10.1158/0008-5472.CAN-11-3468; PMID: 22836755
  • Yu H, Huang X, Liu X, Jin H, Zhang G, Zhang Q, et al. Regulatory T cells and plasmacytoid dendritic cells contribute to the immune escape of papillary thyroid cancer coexisting with multinodular non-toxic goiter. Endocrine 2012; Forthcoming http://dx.doi.org/10.1007/s12020-012-9853-2; PMID: 23264145
  • Sawant A, Ponnazhagan S. Role of plasmacytoid dendritic cells in breast cancer bone dissemination. Oncoimmunology 2013; 2:e22983; http://dx.doi.org/10.4161/onci.22983; PMID: 23526329
  • Bobr A, Igyarto BZ, Haley KM, Li MO, Flavell RA, Kaplan DH. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc Natl Acad Sci U S A 2012; 109:10492 - 7; http://dx.doi.org/10.1073/pnas.1119178109; PMID: 22689996
  • Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 2013; 339:328 - 32; http://dx.doi.org/10.1126/science.1228456; PMID: 23329049
  • Lamsoul I, Métais A, Gouot E, Heuzé ML, Lennon-Duménil AM, Moog-Lutz C, et al. ASB2α regulates migration of immature dendritic cells. Blood 2013; Forthcoming http://dx.doi.org/10.1182/blood-2012-11-466649; PMID: 23632887
  • Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 2012; 209:653 - 60; http://dx.doi.org/10.1084/jem.20111457; PMID: 22430490
  • Seré K, Felker P, Hieronymus T, Zenke M. TGFβ1 microenvironment determines dendritic cell development. Oncoimmunology 2013; 2:e23083; http://dx.doi.org/10.4161/onci.23083; PMID: 23687620
  • Diana J, Simoni Y, Furio L, Beaudoin L, Agerberth B, Barrat F, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 2013; 19:65 - 73; http://dx.doi.org/10.1038/nm.3042; PMID: 23242473
  • Frleta D, Ochoa CE, Kramer HB, Khan SA, Stacey AR, Borrow P, et al. HIV-1 infection-induced apoptotic microparticles inhibit human DCs via CD44. J Clin Invest 2012; 122:4685 - 97; http://dx.doi.org/10.1172/JCI64439; PMID: 23160198
  • Prada N, Antoni G, Commo F, Rusakiewicz S, Semeraro M, Boufassa F, et al. Analysis of NKp30/NCR3 isoforms in untreated HIV-1-infected patients from the ANRS SEROCO cohort. Oncoimmunology 2013; 2:e23472; http://dx.doi.org/10.4161/onci.23472; PMID: 23802087
  • Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson HC, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 2013; 19:1858 - 72; http://dx.doi.org/10.1158/1078-0432.CCR-12-2426; PMID: 23444227
  • Kang TH, Mao CP, Lee SY, Chen A, Lee JH, Kim TW, et al. Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity. Cancer Res 2013; 73:2493 - 504; http://dx.doi.org/10.1158/0008-5472.CAN-12-4241; PMID: 23418322
  • Munir S, Andersen GH, Met O, Donia M, Frøsig TM, Larsen SK, et al. HLA-restricted CTL that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 2013; 73:1764 - 76; http://dx.doi.org/10.1158/0008-5472.CAN-12-3507; PMID: 23328583
  • Faget J, Sisirak V, Blay JY, Caux C, Bendriss-Vermare N, Ménétrier-Caux C. ICOS is associated with poor prognosis in breast cancer as it promotes the amplification of immunosuppressive CD4(+) T cells by plasmacytoid dendritic cells. Oncoimmunology 2013; 2:e23185; http://dx.doi.org/10.4161/onci.23185; PMID: 23802069
  • Schreiber TH, Wolf D, Bodero M, Podack E. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination. Oncoimmunology 2012; 1:642 - 8; http://dx.doi.org/10.4161/onci.20298; PMID: 22934256
  • Pinto A, Rega A, Crother TR, Sorrentino R. Plasmacytoid dendritic cells and their therapeutic activity in cancer. Oncoimmunology 2012; 1:726 - 34; http://dx.doi.org/10.4161/onci.20171; PMID: 22934264
  • Fonteneau JF, Guillerme JB, Tangy F, Grégoire M. Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells. Oncoimmunology 2013; 2:e24212; http://dx.doi.org/10.4161/onci.24212; PMID: 23762802
  • van den Loosdrecht AA, Santegoets SJ, van Wetering S, Kaugh Singh S, Koppes M, Hall A, et al. Allogeneic dendritic cell (DC) vaccination as an “off the shelf” treatment to prevent or delay relapse in elderly acute myeloid leukemia patients: Results of phase I study. J Clin Oncol 2013; abstract 3029
  • Boehrer S, Adès L, Braun T, Galluzzi L, Grosjean J, Fabre C, et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 2008; 111:2170 - 80; http://dx.doi.org/10.1182/blood-2007-07-100362; PMID: 17925489
  • Yang Y, Lizée G, Hwu P. Strong emerging rationale for combining oncogene-targeted agents with immunotherapy. Oncoimmunology 2013; 2:e22730; http://dx.doi.org/10.4161/onci.22730; PMID: 23524978
  • Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P. Dasatinib. Nat Rev Drug Discov 2006; 5:717 - 8; http://dx.doi.org/10.1038/nrd2135; PMID: 17001803
  • Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2010; 362:2260 - 70; http://dx.doi.org/10.1056/NEJMoa1002315; PMID: 20525995
  • Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354:2531 - 41; http://dx.doi.org/10.1056/NEJMoa055229; PMID: 16775234
  • Levy HB, Baer G, Baron S, Buckler CE, Gibbs CJ, Iadarola MJ, et al. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis 1975; 132:434 - 9; http://dx.doi.org/10.1093/infdis/132.4.434; PMID: 810520
  • Kroemer G, Zitvogel L. Abscopal but desirable: The contribution of immune responses to the efficacy of radiotherapy. Oncoimmunology 2012; 1:407 - 8; http://dx.doi.org/10.4161/onci.20074; PMID: 22754758
  • Mothersill C, Seymour CB. Radiation-induced bystander effects--implications for cancer. Nat Rev Cancer 2004; 4:158 - 64; http://dx.doi.org/10.1038/nrc1277; PMID: 14964312
  • Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009; 9:351 - 60; http://dx.doi.org/10.1038/nrc2603; PMID: 19377507
  • Ribas A, Comin-Anduix B, Chmielowski B, Jalil J, de la Rocha P, McCannel TA, et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res 2009; 15:6267 - 76; http://dx.doi.org/10.1158/1078-0432.CCR-09-1254; PMID: 19789309
  • Comin-Anduix B, Sazegar H, Chodon T, Matsunaga D, Jalil J, von Euw E, et al. Modulation of cell signaling networks after CTLA4 blockade in patients with metastatic melanoma. PLoS One 2010; 5:e12711; http://dx.doi.org/10.1371/journal.pone.0012711; PMID: 20856802
  • Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012; 1:1223 - 5; http://dx.doi.org/10.4161/onci.21335; PMID: 23243584
  • Madan RA, Heery CR, Gulley JL. Combination of vaccine and immune checkpoint inhibitor is safe with encouraging clinical activity. Oncoimmunology 2012; 1:1167 - 8; http://dx.doi.org/10.4161/onci.20591; PMID: 23170267
  • Lee SK, Surh CD. Role of interleukin-7 in bone and T-cell homeostasis. Immunol Rev 2005; 208:169 - 80; http://dx.doi.org/10.1111/j.0105-2896.2005.00339.x; PMID: 16313348
  • Sportès C, Gress RE, Mackall CL. Perspective on potential clinical applications of recombinant human interleukin-7. Ann N Y Acad Sci 2009; 1182:28 - 38; http://dx.doi.org/10.1111/j.1749-6632.2009.05075.x; PMID: 20074272
  • Simmons SJ, Tjoa BA, Rogers M, Elgamal A, Kenny GM, Ragde H, et al. GM-CSF as a systemic adjuvant in a phase II prostate cancer vaccine trial. Prostate 1999; 39:291 - 7; http://dx.doi.org/10.1002/(SICI)1097-0045(19990601)39:4<291::AID-PROS10>3.0.CO;2-9; PMID: 10344219
  • Alfaro C, Perez-Gracia JL, Suarez N, Rodriguez J, Fernandez de Sanmamed M, Sangro B, et al. Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients. J Immunol 2011; 187:6130 - 42; http://dx.doi.org/10.4049/jimmunol.1102209; PMID: 22048768
  • Kan S, Hazama S, Maeda K, Inoue Y, Homma S, Koido S, et al. Suppressive effects of cyclophosphamide and gemcitabine on regulatory T-cell induction in vitro. Anticancer Res 2012; 32:5363 - 9; PMID: 23225438
  • Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, et al. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother 2013; 62:383 - 91; http://dx.doi.org/10.1007/s00262-012-1343-0; PMID: 22926062
  • Holcmann M, Drobits B, Sibilia M. How imiquimod licenses plasmacytoid dendritic cells to kill tumors. Oncoimmunology 2012; 1:1661 - 3; http://dx.doi.org/10.4161/onci.22033; PMID: 23264929
  • Hotz C, Bourquin C. Systemic cancer immunotherapy with Toll-like receptor 7 agonists: Timing is everything. Oncoimmunology 2012; 1:227 - 8; http://dx.doi.org/10.4161/onci.1.2.18169; PMID: 22720251
  • Walter A, Schäfer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, et al. Aldara activates TLR7-independent immune defence. Nat Commun 2013; 4:1560; http://dx.doi.org/10.1038/ncomms2566; PMID: 23463003
  • Richel O, de Vries HJ, van Noesel CJ, Dijkgraaf MG, Prins JM. Comparison of imiquimod, topical fluorouracil, and electrocautery for the treatment of anal intraepithelial neoplasia in HIV-positive men who have sex with men: an open-label, randomised controlled trial. Lancet Oncol 2013; 14:346 - 53; http://dx.doi.org/10.1016/S1470-2045(13)70067-6; PMID: 23499546
  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196 - 200; http://dx.doi.org/10.1038/ni758; PMID: 11812998
  • Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24:3089 - 94; http://dx.doi.org/10.1200/JCO.2005.04.5252; PMID: 16809734
  • Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 2009; 115:3670 - 9; http://dx.doi.org/10.1002/cncr.24429; PMID: 19536890
  • Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2013; Forthcoming http://dx.doi.org/10.1038/cdd.2013.72; PMID: 23811849
  • de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 2003; 9:5091 - 100; PMID: 14613986
  • de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJ, et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 2005; 23:5779 - 87; http://dx.doi.org/10.1200/JCO.2005.06.478; PMID: 16110035
  • Paczesny S, Banchereau J, Wittkowski KM, Saracino G, Fay J, Palucka AK. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J Exp Med 2004; 199:1503 - 11; http://dx.doi.org/10.1084/jem.20032118; PMID: 15173207
  • Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Löwik MJ, Berends-van der Meer DM, Essahsah F, et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A 2010; 107:11895 - 9; http://dx.doi.org/10.1073/pnas.1006500107; PMID: 20547850