106
Views
4
CrossRef citations to date
0
Altmetric
Original

Role of the C-terminal linear region of EGF-like growth factors in ErbB specificity

, , , , &
Pages 163-172 | Received 26 Nov 2008, Accepted 13 Mar 2009, Published online: 11 Jul 2009
 

Abstract

The epidermal growth factor (EGF)-like growth factors bind their ErbB receptors in a highly selective manner. Recently, we have shown that the sequence YYDLL in the C-terminal linear region is compatible with binding to all ligand-binding ErbB receptors. In the present study, we show that introduction of the YYDLL sequence into the ErbB1 specific ligands EGF and transforming growth factor-α (TGFα) broadened their receptor specificity towards ErbB4. Upon introduction of the YYDLL sequence into epiregulin, which by itself binds ErbB1 and ErbB4 but not ErbB3, its binding specificity was broadened to ErbB3, concomitant with enhanced affinity for ErbB4. Introduction of the YYDLL sequence into NRG1β resulted in a 10-fold increase in affinity for ErbB3, without affecting its receptor specificity. Remarkably, the strongly enhanced affinity for ErbB3 negatively influenced their mitogenic activity towards cells coexpressing ErbB2 and ErbB3. These observations are discussed in terms of the optimised ErbB affinity, selectivity and mitogenic potential that have taken place during evolution.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,233.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.