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Summary

PrnB, the L-proline transporter of Aspergillus nidulans , belongs
to the Amino acid Polyamine Organocation (APC) transporter
family conserved in prokaryotes and eukaryotes. In silico
analysis and limited biochemical evidence suggest that APC
transporters comprise 12 transmembrane segments (TMS)
connected with relatively short hydrophilic loops (L). However,
very little is known on the structure-function relationships in
APC transporters. This work makes use of the A. nidulans PrnB
transporter to address structure-function relationships by
selecting, constructing and analysing several prnB mutations.
In the sample, most isolated missense mutations affecting PrnB
function map in the borders of cytoplasmic loops with trans-
membrane domains. These are I119N and G120W in L2-TMS3,
F278V in L6-TMS7, NRT378NRTNRT and PY382PYPY in L8-
TMS9 and T456N in L10-TMS11. A single mutation (G403E)
causing, however, a very weak phenotype, maps in the borders
of an extracellular loop (L9-TMS10). An important role of helix
TMS6 for proline binding and transport is supported by
mutations K245L and, especially, F248L that clearly affect
PrnB uptake kinetics. The critical role of these residues in
proline binding and transport is further shown by constructing
and analysing isogenic strains expressing selected prnB
alleles fused to the gene encoding the Green Fluorescent
Protein (GFP). It is shown that, while some prnB mutations
affect proper translocation of PrnB in the membrane, at least
two mutants, K245E and F248L, exhibit physiological cellular
expression of PrnB and, thus, the corresponding mutations can
be classified as mutations directly affecting proline binding
and/or transport. Finally, comparison of these results with
analogous studies strengthens conclusions concerning amino
acid residues critical for function in APC transporters.

Keywords: Aspergillus nidulans , proline, transport, mutagenesis,
structure-function analysis.

Abbreviations: TMS, transmembrane segment, L, hydrophilic
loop, CAR, Consensus Amphipathic Region, APC, Amino acid
Polyamine Organocation transporter family, GFP, Green Fluorescent
Protein, MM and CM, minimal and complete media respectively, Km,
Michaelis constant, Vmax, maximum velocity of transport.

Introduction

Amino acids and their derivatives are transported into and

out of cells by a variety of transporters which comprise

several distinct protein families, some of which are distantly

related (Saier 2000). The largest and best-studied amino

acid transporter family is the Amino acid Polyamine Orga-

nocation (APC) transporter family (Sophianopoulou and

Diallinas 1995, Saier 2000). The APC transporter super-

family includes members that function as solute/cation

symporters and solute/solute anti-porters. They are found

in bacteria, archaea, fungi, eukaryotic protists, plants and

animals. They vary in length, from 350�/850 residues. Most
of them possess 12 transmembrane a -helical segments

(TMS), but members of some sub-families might have 10,

11 or 14 TMS. One APC family member, Hip1p of Sacchar-
omyces cerevisiae has been implicated in heavy metal

transport (Farcasanu et al . 1998). Interestingly, three integral

membrane receptors of mammals, the ecotropic retroviral

leukaemia receptor (ERR), the human retroviral receptor

(HRR) and the T-cell early activator (Tea), are homologous to

APC transporters (Reizer et al . 1993). The ERR protein has

been shown to function as a cation/amino acid co-transporter

(Wang et al . 1991). Other proteins, including the devel-

opmentally controlled GerAII spore germination protein of

Bacillus subtilis and the acetylcholine receptor of Drosophila
melanogaster might also share a common evolutionary

origin with members of the APC family (Reizer et al . 1993).

Several APC bacterial and fungal amino acid transporters

have been identified and studied in great detail at the level of

transport kinetics and regulation of expression (Sophiano-

poulou and Diallinas 1995, Saier 2000, Burkovski and

Kramer 2002 and references therein). Fungal and bacterial

amino acid transporters show significant sequence simila-

rities (33�/62% identity scores in binary comparisons) that

may reflect a common topology and mechanism of action.

Their specificities range from one to several L-amino acids

and their kinetics of transport and regulation of expression

may also vary significantly (Sophianopoulou and Diallinas

1995, Saier 2000). Studies addressing how yeast amino acid

transporters find their way to the plasma membrane have

shown that their topogenesis depends on both general and

family-specific secretion factors or chaperones (Martinez and
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Ljungdahl 2000). Finally, recent studies have shown that

homologues of amino acid transporters in yeast function as

‘sensors’ of amino acids rather than real transporters

(Bernard and André 2001, Forsberg and Ljungdahl 2001).

In Aspergillus nidulans , the prnB gene (Sophianopoulou

and Scazzocchio 1989) encodes a highly specific transporter

for L-proline (Sophianopoulou and Diallinas 1995, Tazebay et

al . 1995). The prnB gene is located in the prn gene cluster

encoding all proteins necessary for proline catabolism (Hull

et al . 1989). Expression of the prnB gene has been studied

in great detail and shown to be induced by proline, amino

acid starvation and conidial germination and to be repressed

by the simultaneous presence of ammonia and glucose (Arst

and Cove 1973, Sophianopoulou et al . 1993, Tazebay et al .

1995, Gonzalez et al . 1997, Tazebay et al . 1997, Cubero et
al . 2000).
This work makes use of the A. nidulans PrnB transporter

to address structure-function relationships by selecting,

constructing and analysing several prnB mutations. Studying

chimeric proteins carrying PrnB mutations fused to the green

fluorescent protein (GFP) allowed one to classify several

mutations to those affecting PrnB topogenesis and to those

directly affecting proline binding and transport. The results

also showed that several of the amino acids affecting PrnB

function are located in similar regions with residues affecting

the function of homologous APC transporters from bacteria,

yeast and mammals.

Results and discussion

Genetic isolation of prnB mutations

Early genetic work has led to the isolation of several prnB-
specific loss-of-function mutations (prnB6 , prnB32 , prnB36 ,

prnB81 , prnB82 , prnB1110 , prnB206 ; Arst and MacDonald
1975, Arst et al . 1981, Jones et al . 1981, Arst Jr., H. N.,
personal communication). A detailed genetic map including

most of these mutations has been constructed and corre-

lated with the physical map available for the prnB locus

(Durrens et al . 1986). To enlarge the original collection of
prnB mutations and gain further insights into the process of

PrnB structure and function, the original genetic selection

was modified in order to isolate partial loss-of-function or

cryosensitive mutations (see Experimental procedures).

Such mutations are more likely to affect PrnB function rather

than its expression. One, thus, isolated six novel prnB
mutations called prnB115 , prnB117 , prnB119 , prnB144 ,
prnB411 and prnB508 .

All prnB mutants isolated previously and herein were

analysed by simple growth tests for their ability to grow on

proline or other nitrogen sources. Figure 1 shows selected

results for growth on proline at 25 and 378C. Within the limits
of growth tests, two types of mutants could be distinguished.

Type 1 mutants, which included all the unconditional muta-

tions from the original collection of Arst et al . (1981), showed
a growth phenotype identical to that of the total loss-of-

function mutation prnB377 resulting from an internal deletion

in the prnB gene (Tazebay et al . 1995, 1997). Type 2

mutants (prnB115 , prnB119 , prnB144 , prnB411 , prnB117

and prnB508 ) showed a growth phenotype compatible, albeit

at different degrees, with a partial loss of PrnB function, more

evident at 258C than at 378C. None of the mutations resulted
in a pH-dependent phenotype and none affected growth on

other nitrogen sources tested (results not shown).

Sequence changes of prnB mutations

The entire prnB open reading frame of each of the mutants

described above was sequenced. The region between the

start and stop codons of prnB was amplified by the

polymerase chain (PCR) reaction, as described in Experi-

mental procedures. PCR products were either sequenced

directly or cloned into bluescript KS(�/) and sequenced using

a series of prnB -specific oligonucleotides (see Experimental
procedures). Unique mutations were found in every case.

The substitutions identified are summarized in Table 1.

Among the 13 mutations sequenced, four (prnB32 ,
prnB36 , prnB82 and prnB1110 ) corresponded to nonsense
and/or frameshift mutations and were not analysed any

further in this work. The physical location of the mutations

that have been mapped previously (Jones et al . 1981) is
completely congruent with their location in the genetic fine

structure map (results not shown, Durrens et al . 1986). All
isolated mutations studied further were renamed on the basis

of the corresponding amino acid substitution (see Table 1).

A mutation affecting prnB mRNA steady state levels

To rule out the possibility that isolated mutations affect prnB
expression rather than PrnB function, it was investigated

whether basal prnB mRNA steady state levels are compar-

able to wild-type levels. Northern blot analyses were carried

out of all prnB mutations at 25 and 378C. It was found that all
mutant strains, except prnB-Extended (prnB115 ), showed
mRNA levels identical to those of a prnB� strain at both

temperatures (results not shown). Mutant prnB-Extended
(prnB115 ) showed reduced prnB mRNA at 258C (Figure

2(a )). This mutation is due to a frameshift mutation in the

physiological stop codon of the prnB gene, resulting in a

seven amino acids extension of the PrnB open reading

frame. Interestingly, the region of the prnB mRNA immedi-

ately downstream from the stop codon contains sequences

which might form a stem-loop structure (Figure 2(b )). In
some cases, such structures have been shown to be critical

for mRNA stability and turnover (Causton et al . 1994, Platt et

al . 1996). Thus, one can speculate that extended translation
of this region might well disrupt the formation of this stem-

loop secondary structure and, thus, affect prnB mRNA

steady state levels.

Design and construction of site-directed prnB mutations

A second approach to identify residues important for PrnB

function or specificity was to construct by in vitro directed

mutagenesis missense mutations altering selected amino

acids conserved in the proline transporters of A. nidulans
(PrnB) and Saccharomyces cerevisiae (Put4p). The muta-

tions introduced concern two specific amino acid residues,

Q219 located in L5 and K245 located within TMS6 of the
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PrnB protein. The choice was based on a number of

observations. Both residues are located in segments of

high conservation in fungal transporters (Figure 3). In

addition, K245 is one of the two positively charged residues

located within a TMS of PrnB. The other is H334 located

within TMS8. Interestingly, a Lys residue in TMS5 of the

phenylalanine transporter (PheP) of E. coli has been shown

to be critical for transport activity (Pi et al . 1993). Charged or

polar amino acid residues in general might be involved

directly or indirectly in protein function.

Figure 1. Growth of A. nidulans mutant strains. Growth of control strains (prnB�, prnB377 ) and mutant strains (prnB-PY382PYPY , prnB-
F278V , prnB-I119N , prnB-T456N , prnB-G120W , prnB-F248L , prnB -NRT378NRTNRT , prnB-G403E and prnB-Extended ). Because prnB
mutations exist in either green (yA�) or yellow (yA2 ) conidiospore genetic background, the corresponding prnB� strains are shown. Growth
tests were carried out on A. nidulans minimal medium supplemented with 595 mM uric acid or 5 mM proline as sole nitrogen sources at 25 and
378C, as indicated. Growth tests were carried out for 60 h at 258C or 48 h at 378C.
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Mutations prnB-Q219R , prnB-Q219H , prnB-K245R , prnB-

K245E and prnB-K245L were constructed and introduced by

targeted homologous integration into the prnB genomic locus

of A. nidulans , as described in Experimental procedures and

previously in Tavoularis et al . (2001). Mutations prnB-Q219R

and prnB-Q219H substitute the Gln found in proline trans-

porters for two residues conserved in all other fungal amino

acid transporters. Mutations prnB-K245R , prnB-K245E and

prnB-K245L help define the role of the positive charge

present in TMS6 of proline transporters. All mutant strains

were analysed by growth tests for their ability to grow on

proline or other nitrogen sources. Figure 4 shows that prnB-

Q219R , prnB-Q219H , prnB-K245L and prnB-K245R mutant

strains grow similarly to a prnB� strain in media containing

proline as the sole nitrogen source at both 37 and 258C.
Mutant strain prnB-K245E showed a mildly reduced growth

on proline at 258C but normal growth at 378C. All mutants
showed normal growth on all other nitrogen sources tested

(results not shown).

Transport properties of the prnB mutants

A kinetic analysis was carried out of proline uptake in all

mutant strains described in this work. All uptake experiments

were performed at 378C. It should also be emphasized that
V -values represent apparent capacities for proline transport,
as they are directly dependent on the amount of PrnB

present at the plasma membrane, a variable that one cannot

Table 1. Mutant alleles of prnB and their phenotypes on proline as sole nitrogen source.

Phenotype on proline

prnB allele 258C 378C Nucleotide change Protein change L-TMS

prnB� �/�/�/�/ �/�/�/�/ �/ �/ �/
prnB377 �/ �/ Deletion (Tazebay et al . 1995) Deletion of 249 amino acids Deletion of TMS6-TMS11
prnB6 �/ �/ ATT3570/AAT357 PrnB-I119N L2-TMS3
PrnB32 �/ �/ TGG13280/TGA1328 PrnB-W409stop L9-TMS10
prnB36 �/ �/ TGG11360/TGA1136 PrnB-W345stop TMS8
prnB81 �/ �/ TTC9350/GTC935 PrnB-F278V L6-TMS7
prnB82 �/ �/ Insertion G1093 PrnB-Frameshiftstop (TAA1148) TMS8
prnB206 �/ �/ Duplication CCCTAT1247 PrnB-PY382PYPY L8-TMS9
prnB1110 �/ �/ TAT9590/TAA959 PrnB-Y286stop TMS7
prnB144 �/ �/�/ GGG3600/TGG360 PrnB-G120W L2
prnB411 �/ �/�/ ACC15170/AAC1517 PrnB-T456N L10-TMS11
prnB115 �/(�/) �/�/ Insertion T1801 PrnB-Extended C-term
prnB117 �/ �/�/ Duplication CCAACCGCA1233 PrnB-NRT378NRTNRT L8-TMS9
prnB119 �/ �/�/ TTT8450/TTG845 PrnB-F248L TMS6
prnB508 �/�/ �/�/�/ GGA13100/GAA1310 PrnB-G403E L9-TMS10

�/�/�/ define wild-type growth, �/ defines lack of growth typical of the non-utilization of a N source, and different number of �/ describe
intermediate growth between �/�/�/ and �/.

Figure 2. prnB mRNA steady state levels (a ) and model of prnB -Extended stem-loop structure (b ). (a ) Northern blot analysis of 10 mg total
RNA extracted from mycelium grown at 258C for 16 h under non-inducing conditions (urea as nitrogen source) followed by 4 h of growth in the
presence of 20 mM L-ornithine (inducing conditions independent of PrnB function; ornithine is taken up by a transporter other than PrnB and is
converted intracellularly to proline (Dzikowska et al. 1999). Therefore, prnB mutations do not affect induction by ornithine). RNA was extracted
from a prnB� strain, a strain carrying a prnB deletion (prnB377 ) and the mutant strain prnB-Extended . RNA transferred onto nitrocellulose filters
was hybridized with prnB- and acnA-specific probes, as described in Experimental procedures. acnA is the A. nidulans actin gene used as an
internal control to monitor RNA amounts (Fidel et al. 1988). (b ) PrnB-Extended stem-loop structure. Analysis of the 3? mRNA region of the prnB-
Extended allele using the DNA Strider programme (Marck 1988). The stop codons of the prnB� and the prnB-Extended alleles are shown within
boxes. The possible interactions for the formation of a secondary structure are indicated by vertical lines. The selection of the region analysed is
arbitrary.
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estimate immunologically due to very low PrnB expression

levels (Tavoularis et al . 2001).
In agreement with growth tests, mutants not growing on

proline as a sole nitrogen source (nonsense or frameshift

mutations and missense mutations prnB-I119N , prnB-F278V

and prnB-PY382PYPY ) show the same level of residual

proline uptake as that found in a strain carrying a deletion of

the prnB gene (results not shown). This is due to other minor

amino acid transporter(s) able to incorporate proline and it

never exceeds 20% of the total uptake (Arst et al. 1980,

Tazebay et al . 1995, Scazzocchio C. and Apostolaki A.,

Personal communication). Table 2 summarizes the results

obtained with all other mutations studied. All partial loss-of-

function mutants obtained by selection for proline toxicity

(prnB-NRT378NRTNRT , prnB-Extended , prnB-F248L ,

prnB-G120W , prnB-T456N and prnB-G403E ) have 1.5�/5-
fold reduced apparent V -values, in agreement with their

reduced growth on proline as a nitrogen source (see Figure

1). Among these mutations, only prnB-F248L also reduces

the affinity of PrnB for proline significantly (4�/4.5-fold).
Substitutions of Q219 had a significant (6-fold) up-effect on

the capacity of PrnB to transport proline and have no obvious

growth phenotype on proline as a nitrogen source. Different

substitutions of K245 had different effects on PrnB function.

Mutant prnB-K245R showed proline uptake kinetics nearly

identical to a prnB� strain. While both prnB-K245L and

prnB-K245E mutants showed approximately 2�/3-fold re-

duced capacity for proline transport, the former has a

Figure 3. Sequence alignment of bacterial and fungal amino acid transporters. Two regions of high amino acid similarity, (a ) and (b ), are
presented. Region (a ) is located in L5 and region B in TMS6 in all amino acid transporters. Q219 and K245 (numbering refers to A. nidulans )
conserved only in proline transporters of A. nidulans and S. cerevisiae map in regions (a ) and (b ), respectively. Similar amino acids are shown in
dark and light grey boxes, according to the degree of similarity (�/60% and �/40%, respectively). Small dashes indicate gaps introduced by the
programme to maximize similarity. AROP (P15993), PHEP (P24207), ANSP (P77610), GABP (P25527) and LYSP (P25737) are E. coli
permeases, specific for aromatic amino acids, phenylalanine, asparagine, GABA and lysine, respectively. PROY (P37460) and ANSP (P40812)
are Salmonella typhimurium permeases, specific for proline and asparagine, respectively. GABP (P46379) and ROCC (P39636) are B. subtilis
permeases, specific for GABA and possibly all amino acids, respectively. AROP (Q46065) is a permease specific for aromatic amino acids from
Corynebacterium glutamicum . INA1 (P34054) is a putative general amino acid permease from Trichoderma harzianum . PRNB is the A. nidulans
proline-specific permease. CAN1 (P43059) is a permease-specific for the basic amino acids lysine and arginine from Candida albigans . PUT4
(P15380), CAN1 (P04817), ALP1 (P38971), LYP1 (P32487), HIP1 (P06775), BAP2 (P38084), BAP3 (P41815), AGP1 (P25376), GNP1
(P48813), VAL1 (P38085), TAT2 (P38967), DIP5 (P53388) and MUP1 (P50276) are S. cerevisiae permeases specific for proline, arginine, basic
amino acids, lysine, histidine, leucine/valine/isoleucine, valine, asparagine/glutamine, glutamine, valine/tyrosine/tryptophan, tryptophan,
glutamate/aspartate and methionine, respectively. Finally, GAP1 (P19145), AGP3 (P43548) and AGP2 (P38090) are general amino acid
permeases from S. cerevisiae . In parentheses, the accession number of each protein in the SwissProt database is indicated. The directed
mutations carried out in the present work are indicated by arrows.
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significantly more reduced affinity for proline transport than

the latter (8-fold compared to 2-fold). None of these changes

affects growth of these mutants on proline (see Figure 4).

Interestingly, prnB-F248L and prnB-K245L , the mutations

affecting most (4- and 8-fold, respectively) the affinity of PrnB

for its substrate, concern two amino acid residues on the

same side of the TMS6 a -helix (see below and Figure 6).

F248 is an absolutely conserved residue in the APC family

while K245 is conserved only in fungal proline transporters.

One could speculate that such amino acids could directly or

indirectly affect binding of substrates. Mutation prnB-F248L

presented an additional interest due to work carried out in an

homologous transporter. It has been shown that substitution

of the homologous Phe residue for a Ser in Bap1p (branched

chain amino acid transporter) and Hip1p (histidine transpor-

ter; Farcasanu et al . 1998) in S. cerevisiae led to transpor-

ters with reduced amino acid uptake capacity, resistant to

low pH and with the novel ability to take up K� ions (Wright

et al . 1997). It was examined whether the mutation prnB-

F248L had a similar effect on PrnB function. Within the limits

of growth tests carried out in the presence of different

concentrations of KCl (10 and 100 mM) and different pHs

(4.8, 6.8 and 9.0) and uptake studies in different concentra-

tions of KCl (10 and 100 mM), one has been unable to

demonstrate similar effects (results not shown). This might

depend on which amino acid substitutes Phe.

One has also examined whether any of the mutations

studied affect the absolute dependence, seen for the wild-

type PrnB transporter (unpublished results), on a H�

gradient across the plasma membrane. In all PrnB mutants,

similar to a wild-type strain, pre-incubation with H�-ATPase

inhibitors (N?,N?-dicyclohexylcarbodiimide) or protonophores

Figure 4. Growth of A. nidulans mutant strains. Growth of control strains (prnB�, prnB377 ), the recipient strain prn397 and the mutant strains
(prnB-Q219R , prnB-Q219H , prnB-K245E , prnB-K245R and prnB-K245L ) is shown. Because prnB mutations exist in either a green (yA�) or
yellow (yA2 ) conidiospore genetic background, the corresponding prnB� strains are shown. Growth was tested on A. nidulans MM
supplemented with 5 mM proline as sole nitrogen sources at 25 and 378C, as indicated. Strains grown on 595 mM uric acid as a nitrogen source at
378C are also shown. Growth tests were carried out for 60 h at 258C or 48 h at 378C. Note the difference in growth between prnB397 (deletion of
prnB and prnC ) and prnB377 (deletion of prnB ) strains, which allows recovery of even a complete loss-of-function mutation in prnB by the
selection technique employed (see Experimental procedures).
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(carbonyl cyanide m -chlorophenyl-hydrozone) abolished

PrnB-dependent proline uptake (results not shown), indicat-

ing that PrnB is a proline/H� symporter.

Cellular expression of PrnB in selected mutant

Results presented above clearly show that two mutations

(K245L, F248L). affect the affinity (Km) of PrnB for proline.

However, as far as it concerned the effect of different

mutations on proline transport (V ), one could not draw any

conclusion unless the amount of the protein in the plasma

membrane was estimated. As has been discussed previously

(Diallinas et al . 1998), the immunological detection of

Aspergillus transporter proteins expressed from their native

promoters has not been possible, and this is common also

for many other transporters from different organisms, possi-

bly due to low expression levels (Tavoularis et al. 2001 and

references therein). On the other hand, over-expression of

transporters often elicits a stress signal on the secretory

pathway (unpublished observations) and induces the Un-

folded Protein Response (Ma and Hendershot 2001). Thus,

one has previously described the systematic use of func-

tional PrnB-GFP chimeric molecules to study the cellular

expression and topogenesis of PrnB from its native promoter

(Tavoularis et al. 2001). Here, this system was used (see

Figure 5 and Experimental procedures) to study selected

prnB mutations, which affect proline uptake kinetics (K245L,

K245E, F248L, T456N). Fluorometric quantification in cell-

free crude extracts (see Experimental procedures and

Tavoularis et al . 2001) showed that all mutants expressed

97�/120% of the wild-type levels of GFP (results not shown).

Figure 5(a ) shows that all strains analysed carry a single

copy of prnB-gfp integrated at the resident prnB locus, while

Figure 5(b ) shows the cellular expression of PrnB in the wild-

type and the mutant strains, as seen by confocal laser

microscopy. It is apparent that while mutations K245L and

T456N affect partially the localization of PrnB in the plasma

membrane, mutations K245E and F248L exhibit physiologi-

cal cellular expression of PrnB and should, thus, directly

affect PrnB function.

One has also investigated whether the presence of GFP

affects the kinetics of different PrnB mutants. Similar to wild-

type (Tavoularis et al . 2001), the presence of GFP con-

nected with a four amino acid linker to the C-terminus of PrnB

does not affect the affinity (Km) of neither wild-type PrnB nor

PrnB mutants for proline (results not shown). On the other

hand, and as previously reported for the wild-type protein

(Tavoularis et al . 2001), GFP has a negative effect on the

capacity for proline transport, especially at 378C. V -values in
PrnB-GFP mutants are reduced to 50�/75% of the values

obtained with wild-type PrnB (results not shown). Thus,

although GFP has not been an entirely silent tag, it has

proved to be an excellent tool to investigate PrnB cellular

expression in wild-type and prnB mutants.

Implications of the topology of PrnB functional mutations

Figure 6 shows the predicted topology of PrnB based on

computer programmes (PRED-TMR algorithm, see Experi-

mental procedures) utilizing multiply aligned APC transpor-

ters and experimental data from biochemical studies with

homologous proteins, PheP (Pi and Pittard 1996, Cosgriff et
al . 2000), AroA (Cosgriff and Pittard 1997, Cosgriff et al .
2000), LysP (Ellis et al . 1995), GabP (Hu and King 1998a)

and Gap1p (Gilstring and Ljungdahl 2000). It must also be

stressed that, using the same algorithms, none of the

missense or duplication mutations described herein seem

to alter significantly the hydrophobicity of any TMS. With the

exception of a single mutation (G403A), all missense

mutations affecting PrnB function map in the borders of

cytoplasmic loops with transmembrane domains and in

TMS6. The distribution of PrnB mutations to analogous

findings was compared with other APC transporters. As

already discussed above, it has been shown that specific

mutations in TMS6 of Bap1p and Hip1p in S. cerevisiae led

to transporters with altered substrate specificity (reduced

amino acid uptake and the novel ability to take up K� ions).

Altered substrate specificity mutations have also been

identified in L1 (P113), L2-TMS3 (P148, V149, S152,

Y173), L6 (G308, P313), L7 (Y356) and TMS10 (W451,

F461) of the arginine transporter of S. cerevisiae (Can1p)

and in TMS3 of the glutamine/asparagine transporter of S.
cerevisiae Gnp1p (W239) (Regenberg and Kielland-Brandt

2001). In PheP (E. coli phenylalanine transport), it has been
shown that mutations affecting function are located in the N-

terminal loop (R26, H27), L2-TMS3 (Y92, W95, F101, W105,

E118), L4-TMS5 (E159, E161, K168), L6 (E226), TMS7

(R252) and L8 (R317). In addition, insertions of single Ala

residues in L8-TMS9 had major effects on PheP transport

activity (Pi et al . 1998). In AroP (E. coli aromatic amino acid

transport), site-directed mutagenesis has established that a

key residue involved in tryptophan transport is Y103 (Cosgriff

et al . 2000). In other words, although mutations affecting the

function of APC transporters map in various segments of

different proteins, at least three regions seem of primary

importance: L2-TMS3, TMS6 and L8-TMS9. The importance

of L2-TMS3 is strengthened from the observation that, in all

relevant studies, mutations affecting the function of amino

Table 2. Km and V -values for
3H-proline uptake in the wild-type and

in strains carrying PrnB mutations.

Strains Km (mM)
Vmax (pmoles min

�1 108

viable conidiospores�1)

prnB� 349/2.0 8.09/0.2
prnB-NRT378NRTNRT 509/2.0 3.29/0.05
PrnB-Extended 309/2.0 6.29/0.1
prnB-F248L 1349/10 4.59/0.1
prnB-G120W 339/2.0 1.59/0.05
prnB-T456N 359/2.0 1.89/0.05
prnB-G403E 719/3.0 4.09/0.1
prnB-Q219R 749/3.0 52.89/3.0
prnB-Q219H 589/3.0 43.59/3.0
prnB-K245E 619/3.0 2.99/0.05
prnB-K245L 2819/10 4.39/0.1
prnB-K245R 349/2.0 6.79/0.1

Note : Proline uptake assays were performed as described in
Experimental procedures. Proline uptake is expressed in pmoles
per minute per 108 viable conidiospores. The values shown
represent averages of at least three independent assays showing
no significant deviation.
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acid transporters were identified within this region. The role

of TMS6 in substrate binding and transport is strongly

supported by studies involving three different transporters,

PrnB (herein), Bap1p and Hip1p (Wright et al . 1997). Finally,

the importance of L8-TMS9 is underlined by the similar

negative effects caused by insertions (or duplications) of

amino acids in PheP and PrnB. Interestingly, this region

corresponds to a consensus amphipathic region (CAR)

shared by many APC transporters and the non-homologous

mammalian GABA transporters active in the nervous system

(Sophianopoulou and Diallinas 1995, Hu and King 1998b).

The CAR has been also shown to be functionally significant

in both GabP (Hu and King 1998a) and the mammalian

mouse cationic amino acid transporters MCAT (Closs et al .

1993). The channel forming nature of the CAR suggests that

it might be part of the substrate translocation pathway and

that insertions or duplications of amino acid residues might

directly affect its function or alter its topology relatively to

other domains involved in amino acid binding and transport.

Conclusions

None of the previous studies addressing structure-function

relationships in APC transporters has directly shown whether

the mutations described have affected the cellular expres-

sion and translocation of transporters in the plasma mem-

brane or the actual transport function of the protein. In a

single study, a number of non-functional or altered specificity

AroP-PheP chimeric proteins, expressed from high copy

plasmids, have been studied using immunological detection

with PheP-specific antisera (Cosgriff et al . 2000). This work

studied mutations in an amino acid transporter expressed

form its native promoter. It was shown that neither transcrip-

tion nor translation are affected in different prnB mutants, as

judged by northern blots and fluroscence quantification

analyses of PrnB-GFP chimeras. It was also shown that

mutant transporters still depend on a proton gradient across

the plasma membrane. Using laser confocal microscopy, it

was shown that mutations could be classified to two main

groups: Those with partially defective topogenesis in the

Figure 5. Construction and analysis of isogenic strains carrying wild-type and mutant prnB-gfp genes. (a ) Southern blot analysis of total
genomic DNA extracted from the recipient strain prnB397 , the control strains TpBGFPD and TpA4 and the mutant strains prnB-T456NGFP ,
prnB-K245LGFP , prnB -K245EGFP and prnB-F248LGFP (for strain details see Experimental procedures). �/10 mg of genomic DNA from each
strain were digested with Pst I, transferred onto nitrocellulose filters and hybridized with a prnB -sgfp specific probe (as described in Experimental
procedures and Tavoularis et al . 2001). The �/4.15 kb seen in all transformants corresponds to the homologous integration of a single prnB-gfp
chimeric gene in the prnB genomic locus (Tavoularis et al. 2001). Strain TpBGFPD yields the expected �/1.8 kb band. Molecular weight markers
are indicated in kb. (b ) Representative photos from confocal laser microscopy of TpA4 (1) and the mutant strains, prnB-T456NGFP (2), prnB-
K245LGFP (3), prnB-K245EGFP (4) and prnB-F248LGFP (5), grown under induced conditions (20 mM proline-glucose) for 16 h at 258C.

Figure 6. Predicted location of PrnB mutations. The PrnB polypeptide chain is shown crossing the membrane 12 times in a zigzag fashion with
the N- and C-termini retained in the cytoplasm. This model has been drawn on the basis of the hydropathy blot and the ‘positive-inside’ rule (Von
Heijne 1992), as described in Experimental procedures and the text. The transmembrane domains shown in boxes contain 19�/22 amino acid
residues. The two TMS charged residues (K245 and H334) are indicated by circles.
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plasma membrane and those with no obvious cellular defect

but reduced transport activity. Kinetic analysis of the latter

clearly demonstrated that some mutants are directly affected

in proline binding and transport (notice the lack of transport

activity reflected in the lack of growth of PrnB-F248L on

proline, despite an absolutely physiological cellular expres-

sion at 258C). The molecular and genetic tools described

herein will allow one to investigate in detail aspects of APC

transporters such as interactions with their substrates or

interactions with chaperones involved in their controlled

subcellular localization.

Experimental procedures

Media, growth conditions and strains for A. nidulans

Minimal (MM) and Complete (CM) media and growth conditions for
A. nidulans have previously been described (Cove 1966). Supple-
ments were added when necessary. Nitrogen sources, urea and
proline were used at a final concentration of 5�/10 mM. Uric acid was
used at a concentration of 595 mM. The carbon sources, glucose and
ethanol, were used at final concentrations of 1% w/v and v/v,
respectively. The A. nidulans strains used have the following
genotypes: yA� pabaA1 (prnB� ), yA2 pantoB100 (prnB� ),
argB2 biA1 pantoB100 , yA2 pabaA1 prnB377 (prnB377 ), yA2
pabaA1 riboB2 pantoB100 prn397 (prnB397 ) and yA2 pabaA1
sasA60 . prn397 is a deletion starting at the Pst I site of the prnB
gene and extending up to the Pst I site of the prnC gene (Tavoularis
et al . 2001). prnB377 is a deletion in the open reading frame of the
prnB gene that was described previously in Tazebay et al . (1995).
TpBGFPD and TpA4 strains were derived from prn397 strain
transformed with plasmids pBC9 and pA4, respectively (Tavoularis
et al . 2001). prnB-T456NGFP , prnB-K245LGFP , prnB-K245EGFP
and prnB-F248LGFP strains were derived from prn397 transformed
with plasmids pA4 carrying the corresponding mutant prnB alleles
constructed by in vitro site-directed mutagenesis (Ex-Site PCR-
Based Site-Directed Mutagenesis Kit; Stratagene, La Jolla, CA). In
all cases, the sequence of the entire prnB and gfp open reading
frames was determined using the ABI 310 Genetic Analyser at the
Institute of Biology, NCSRD, Athens, Greece. All other strains
including prnB alleles isolated in this work were either selected
from yA2 pabaA1 sasA60 strain or constructed in strain yA2 pabaA1
riboB2 pantoB100 prn397 . pantoB100 , pabaA1 , riboB2 , biA1 and
argB2 indicate auxotrophies for D-pantothenic acid, p -aminobenzoic
acid, riboflavine, biotin and arginine, respectively. yA� indicates
green conidia, while yA2 results in yellow conidia. These markers do
not affect the regulation of gene products involved in proline uptake
and catabolism. The sasA60 mutation leads to toxicity of com-
pounds, which can be converted to semi-aldehydes such as L-proline
and GABA (g -amino-n-butyrate). The toxicity of L-proline to sasA60
strains is such that mutations conferring resistance can be selected
(Arst et al . 1981).

DNA manipulations and protoplast transformation

Plasmid isolation from Escherichia coli strains and standard DNA
manipulations were performed as previously described (Sambrook et
al . 1989). Polymerase Chain Reaction (PCR) was carried out using
AmpliTaq DNA polymerase (Perkin-Elmer) and the Expand High
Fidelity PCR system (Roche Molecular Biochemicals, Mannheim,
Germany). DNA sequencing of plasmid constructions and PCR
products were carried out using the ABI 310 Genetic Analyser at the
Institute of Biology (NCSRD, Athens, Greece). The oligonucleotide
primers, specific for the prnB gene, used for sequencing and PCR
amplifications were:

PA: 5?CTGGGGAATTCCCGCTCAGGAATCACTT3?

BA: 5?CCAGCCGGGACTC TTCTC3?

UA: 5?CCCCCGTCGGCCAAGAGC3?

P6: 5?GTCCTGGGCGAGATGACC3?

P1: 5?GCCCTGAACGTCTTCGCG3?

P9: 5?GGTTCCCGGGGACACTGG3?

P3: 5?GGAACATCCCCAAAGCC3?

P7: 5?CGCTCGCCGGTGAGGG3?

P109: 5?AACGGGTACGCGGTGTTCTT3?

P117: 5?GATCTCTGCCTGGTCATC3?

BB: 5?GCGATAACTATCTGGTAG3?

UB: 5?CCACCACCAGACTCGCTCC3?

P8: 5?CCGAAGCAGTGAAGCGGC3?

P4: 5?AGAACAGCCACATAGGG3?

P11: 5?CCAGCCTCAAGGGTAGGG3?

P2: 5?AGAAGGTGAAAACACGG3?

P5: 5?CTCCGTACCACTCGACC3?

P10: 5?CGGTGAAGCGGCCGATC3?

The oligonucleotide primers used for the in vitro construction of prnB
alleles were:

Q219E: 5?CCGCTACTGGGAAGACCCGGTGC3?

Q219R: 5?CCGCTACTGGCGAGACCCCGGTGC3?

Q219H: 5?CCGCTACTGGCACGACCCCGGTGC3?

K245R: 5?GCCCTGATCAGGTCCGGTTTTTCG3?

K245E: 5?GCCCTGATCGAGTCCGGTTTTTCG3?

K245L: 5?GACTGCCCTGATCCTGT CCGGTTTTTCG3?

A. nidulans protoplast transformation was carried out as described
by Tilburn et al . (1983). Total genomic DNA isolation from A.
nidulans strains and Southern blot analysis has been carried out as
in Lockington et al. (1985). The DNA fragment used as a probe in
Southern blots was a �/2 kb PpuMI-BamHI restriction fragment of
plasmid pA4 (Tavoularis et al. 2001). Northern blot analysis has
been carried out using the glyoxal method described by Tazebay et
al . (1997). The DNA fragment used as a probe in northern blots was
a �/1.8 kb Pst I restriction fragment of the prnB gene (Sophiano-

poulou and Scazzocchio 1989) isolated from plasmid pAN225 (Hull
et al . 1989, Tavoularis et al. 2001). The A. nidulans actin gene
(acnA ) is used as an internal control to monitor the amount of RNA
loaded in different lanes (Fidel et al. 1988, Tazebay et al . 1997).

Genetic isolation of prnB mutations

Early genetic work had led to the isolation of several prnB-specific
mutations (prnB6 , prnB50 , prnB32 , prnB36 , prnB81 , prnB82 ,
prnB109 , prnB1110 , prnB206 ) (Arst and MacDonald 1975, Arst et
al . 1981, Jones et al . 1981, Arst Jr., H. N., Personal communica-
tion). Those used in the present work were selected either as
spontaneous mutations conferring resistance to 50 mM L-proline in a
strain of genotype proA6 sasA60 (prnB81 , prnB82 ) or proB9
prnD156 (prnB206 ), as described by Arst et al. (1981), or after
treatment of a strain of genotype proA6 with N-methyl-N?-nitro-N-
nitrosoguanidine (NTG) (prnB6 , prnB32 and prnB36 ), as described
by Arst and MacDonald (1975). The toxicity of L-proline to sasA60
strains is such that mutations conferring resistance can be selected
(see above, Arst et al . 1981). The proA6 mutation results in an L-
proline requirement, which facilitates screening of prnB mutations,
distinguishing them from mutations in other genes (Arst et al . 1980,
Tazebay et al . 1995). This work modified the original genetic

selection in order to isolate partial loss-of-function or conditional
prnB mutations. prnB mutants were selected on an A. nidulans
strain with a sasA60 genetic background (yA2 pabaA1 sasA60 ), as
spontaneous or UV-induced sectors conferring resistance to 50 mM
L-proline, as described by Arst et al . (1981), at both 25 and 378C. All
mutant strains were then tested at both temperatures, in order to
recognize cryo- and temperature sensitive mutants. Selected puta-

tive prnB mutants were crossed to a strain argB2 biA1 pantoB100 to
segregate out the sasA60 mutation.
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Construction of targeted prnB alleles and prnB-gfp chimeric genes

In vitro prnB directed mutagenesis was performed by the method of
Kunkel et al. (1987) using plasmid pBHX1. This plasmid contains the
EcoRI-Hind III fragment of plasmid pAN225 including the prnB gene
(Tavoularis et al . 2001). The codon CAA758 that specifies amino acid
residue Q219 of PrnB was substituted for CAC758 (mutation H219)
and CGA758 (mutation R219). The codon AAG836 that specifies
amino acid residue K245 of PrnB was substituted for GAG836 (E245),
CTG836 (L245) and AGG836 (R245). The fragments PpuMI-Sph I
(�/1.2 kb) of the plasmid pBHX1 containing the mutations were
sequenced to verify that none contains any other mutations and were
used to substitute for the same fragment of plasmids pBC9 or pA4.
Plasmid pBC9 contains a�/4.9 kb EcoR I-PflMI fragment, derived
from plasmid pAN225, containing the prnB gene and part of the
prnC gene in a bluescript KS(�/) vector (Tavoularis et al. 2001). pA4
is a version of pBC9 in which the prnB open reading frame is fused
in-frame with the gfp open reading frame via a specific four amino
acid linker (Tavoularis et al. 2001). Upon transformation of the
mutant strain prn397 , which carries a large deletion extending from
within the prnB open reading frame to within the prnC open reading
frame, with linearized pBC9 or pA4 plasmids containing the muta-
tions, transformants are directly isolated on proline as the sole
nitrogen source. Strain prn397 lacks both PrnB and PrnC (L-D1-
pyrroline-5-carboxylate dehydrogenase) activities and does not grow
at all on media containing proline as a sole nitrogen source, as the
absence of PrnC results in strong proline toxicity. This strain allows
the direct selection of prnC� transformants upon reintroduction of
sequences containing any prnB allele and the missing prnC
sequences, notwithstanding whether or not the introduced prnB
sequences are functional. This is because even complete loss-of-
function mutant in prnB (see below) allows leaky growth on proline,
which can easily be assessed on the background of the prnB-prnC
deleted strain. The functionality of the PrnB protein can then be
assessed directly by growth on proline as a sole nitrogen source
(Tavoularis et al . 2001). This system leads to the targeted, single-
copy integration of any prnB allele or prnB-gfp chimeric gene at the
resident prnB locus, thus avoiding complications arising from ectopic
and/or multiple integrations of prnB copies.

Confocal laser microscopy

Samples were prepared as described previously in Tavoularis et al.
(2001). Confocal laser microscopy was carried out on a BIO-RAD
MRC 1024 CONFOCAL SYSTEM, Laser Sharp Version 3.2 Bio-Rad
Software, Zoom �/4, Excitation/emission: 488nm/Blue, Samples at
Laser Power 10%, Kalman filter n	/5�/6, 0.3 mm cut, Iris: 7�/8,
Crypton/Argon Laser. Nikon DIAPHOT 300 Microscope, �/60 (Oil
immersion) Lens Emission Filter 522/DF35. Lens Reference: Plan
Apo 60/1.40 oil DM (Nikon, Japan) 160175, 60 DM/Ph4, 160/0.17.

Fluorometry

Samples were prepared as described previously in Tavoularis et al.
(2001). A Perkin Elmer Fluorescence Spectrophotometer MPF-3
was used. Emission was detected at 510 nm, Dl	/6 nm when 488
nm, Dl	/4 nm was used as the excitation wavelength. Values were
normalized against the amount of total protein in the samples and
expressed as relative GFP fluorescence units per micrograms of
protein. Protein concentration was determined using a modified
Bradford assay (Bradford 1976).

Proline transport assays

[2,3,4,5-3H] L-proline uptake was assayed in germinating conidia at
378C, as previously described (Tazebay et al . 1995, Meintanis et al .
2000). Standard uptake assays for the determination of initial uptake
rates were performed in A . nidulans MM (pH 6.5) by using 10 mM
[2,3,4,5-3H] L-proline (specific activity 120 Ci mmol�1; Moravek,
Biochemicals, Brea CA, USA). Initial uptake rates were expressed in
pmol of substrate incorporated per 1 min per 108 viable conidia.
Radioactivity was determined in sediment and supernatant by liquid

scintillation counting (Beckman Instruments). Transport measure-
ments were repeated independently and the reported results
represent the mean values of at least three-to-five different experi-
ments. The apparent Michaelis constant (Km) and maximal velocity
(V ) values for 3H L-proline were determined from double reciprocal
plots of the initial uptake rates against substrate concentration. Initial
uptake rates were corrected by subtracting background uptake
values, evident in the prn377 total loss-of-function mutant strain,
calculated in every uptake experiment (Tazebay et al . 1995). The
errors given are standard deviations of the mean value.

In silico analyses

Sequences were collected from the SwissProt database using the
programme BLASTP (Altschul et al . 1997) and were aligned using
the programme CLUSTAL-X (Thompson et al . 1997). Predicted
topology of PrnB based on computer programmes (PRED-TMR
algorithm; http://biophysics.biol.uoa.gr/PRED-TMR; Pasquier et al .
1999) and experimental data from biochemical studies with homo-
logous proteins.
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