96
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Neutrophil Tolerance to Oxidative Stress Induced by Hypoxia/Reoxygenation

, , , , , & show all
Pages 1003-1009 | Published online: 07 Jul 2009
 

Abstract

Repetitive episodes of hypoxia/reoxygenation induce cellular adaptations resulting in a tolerance process against oxidative stress. We studied the effects of chronic episodes of hypoxia/reoxygenation on neutrophil antioxidant defenses, neutrophil oxidative capability, and oxidative damage induced in neutrophils and plasma. Seven professional apnea divers participated in the study. Blood samples were taken under basal conditions, after a diving apnea session, and under basal conditions after five consecutive days of diving apnea sessions (basal post-diving). Chronic episodes of hypoxia/reoxygenation increased malondialdehyde (MDA), carbonyl derivates and creatine kinase (CPK) in plasma. Neutrophil catalase (CAT) levels were higher in basal post-diving. Neutrophil oxidative burst was maintained after diving, although the maximum response was delayed in basal post-diving. Neutrophil thioredoxin reductase (TR) activity increased in basal post-diving, and glutathione reductase (GR) activity was maintained. Chronic, repetitive episodes of diving apnea induce neutrophil adaptations in order to delay the oxidative burst response and to facilitate protein reduction. Diving apnea could be a good model to study tolerance to the oxidative stress generated by hypoxia/reoxygenation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.