722
Views
64
CrossRef citations to date
0
Altmetric
Original Article

Optimising the design of a broad‐band light source for the treatment of skin

, &
Pages 177-189 | Received 25 Jul 2005, Accepted 25 Aug 2005, Published online: 12 Jul 2009
 

Abstract

Phototherapy has become a treatment of choice in many areas of medicine. Light can be used to deliver energy to tissue selectively targeting specific structures in order to induce the desired therapeutic outcome. The choice of optical parameters for a specific application is not simple. Wavelength, energy, exposure time and fluence can be varied and induce a wide range of tissue effects. The treatment of the skin with light is probably the one phototherapy application that is most developed in terms of technology and market maturity. White light systems are extensively used to address a range of skin conditions. However, different conditions have different physiology and hence require differing optical parameters. The technology standard is based upon systems, which have a number of different optical filters allowing the output to be tailored to the specific application. This paper discusses the advantages of a diferent type of system, namely the iPulse i300 (Cyden Ltd, Swansea, UK), which uses a single dichroic reflectance filter and whose optical output is changed by varying other parameters in a carefully controlled manner.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 360.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.