129
Views
22
CrossRef citations to date
0
Altmetric
Conference papers

A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity

, , , , &
Pages 181-187 | Received 20 Oct 2008, Published online: 09 Sep 2009
 

Abstract

A variety of pulmonary hazard studies in rats have demonstrated that exposures to ultrafine or nanoparticles (generally defined as particles in the size range < 100 nm) produce more intensive inflammatory responses when compared with bulk-sized particle-types of similar chemical composition. However, this common perception of greater nanoparticle toxicity is based on a limited number of studies, conducted primarily with titanium dioxide and carbon black particle-types. Apart from variables such as particle size and surface area, it is conceivable that several additional physicochemical particle characteristics could play more significant roles in facilitating the development of nanoparticle-related toxicity; particularly when considering particle surface-cell interactions. These include but are not limited to: (i) Surface reactivity of particle-types; (ii) surface coatings; (iii) aggregation/disaggregation potential; and (iv) the method of nanoparticle synthesis. We present results of pulmonary bioassay hazard/safety studies with quartz particles of varying sizes/surface areas. These demonstrated that intratracheal instillation exposures to fine-sized, Min-U-Sil quartz particles (0.5 µm [particle size] – 5 m2/g [surface area]) produced (persistent) enhanced pulmonary toxicity (inflammation, cytotoxicity, cell proliferation and/or histopathology) in rats when compared to nanoscale quartz particles (50 nm–31 m2/g), but not when compared to smaller nanoscale quartz sizes (e.g., 12 nm–91 m2/g). The toxicity results correlated with red blood cell hemolytic potency as a measure of particle surface reactivity. In a second pulmonary bioassay study in rats, pulmonary hazard effects were measured following exposures to three different ultrafine (nano) TiO2 particle-types, each with similar particle size distributions. The various TiO2 particles differed in their crystal structures and surface reactivity endpoints as measured by the Vitamin C yellowing assay. Moreover, the surface activity characteristics correlated with potency of hazard biomarkers as described above, in these dose/response, time-course studies. It is concluded that particle surface reactivity, rather than particle size/surface area endpoints correlated best with lung inflammatory potency following exposures to particles.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.