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Bioengineered blood vessels
Guoguang Niu, Etai Sapoznik & Shay Soker†

†Wake Forest Institute for Regenerative Medicine Wake Forest Baptist Health,

Medical Center Boulevard, Winston-Salem, NC, USA

Cardiovascular disease (CVD) affecting blood vessel function is a leading cause

of death around the world. A common treatment option to replace the

diseased blood vessels is vascular grafting using the patient’s own blood

vessels. However, patients with CVD are usually lacking vessels for grafting.

Recent advances in tissue engineering are now providing alternatives to

autologous vascular grafts in the form of tissue-engineered blood vessels

(TEBVs). In this review, we will describe the use of different scaffolding

systems, cell sources and conditioning approaches for creating fully functional

blood vessels. Additionally, we will present the methods used for assessing

TEBV functions and describe preclinical and clinical trials for TEBV. Although

the early results were encouraging, current designs of TEBV still fall short as

a viable clinical option. Implementing the current knowledge in vascular

development can lead to improved fabrication and function of TEBV and

hasten clinical translation.
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1. Introduction

Vascular grafts have wide medical applications in the treatment of cardiovascular
disease (CVD), including myocardial infarction and infrainguinal artery occlusive dis-
ease [1]. According to statistics provided by the American Heart Association in 2013,
one-third of all deaths in the USA were attributable to CVD [2]. Vascular grafting
may be necessary in advanced CVD cases, and autologous vascular grafts retrieved
from the internal mammary arteries and saphenous veins are commonly used [3].
Availability of these grafts, however, can be limited by the patient’s age and
pathology. Artificial alternatives, composed of expanded polytetrafluoroethylene and
woven/knitted polyethylene terephthalate fibers, are commercially available and have
been successfully used as medial and large internal diameter (ID) prosthetics (ID
‡ 6 mm) [1,4]. Unfortunately, when applied to small diameter vessels (ID < 6 mm),
these artificial grafts displayed poor patency, largely due to stenosis, myointimal hyper-
plasia, calcium deposition, infection and thromboembolization [5,6]. Thus, there is an
urgent need to identify a reliable source of non-autologous vascular grafts for small
diameter blood vessels.

In order for a tissue-engineered blood vessel (TEBV) to perform like a native
blood vessel, the following criteria should be met: i) appropriate mechanical
properties, which render the structure robust and easily handled during surgery,
as well as compliant with the physiological environment; ii) biocompatible,
non-immunogenic and low risk of inducing thromboembolic events and intimal
hyperplasia; iii) and remodeling capabilities and integration with the native host
vessels [7,8]. In our point of view, the TEBV consists of three essential characteristics:
i) a scaffolding system that supports cell attachment and proliferation; ii) a variety of
cell types, including endothelium, smooth muscle cells (SMCs) and fibroblasts
(FB); and iii) and neo-tissue formation following exposure to a sequence of physical
and chemical signals during a conditioning phase. In the subsequent sections, we
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describe scaffolding options, cell sources and conditioning
used in recent years, as well as a review of preclinical and
clinical assessments of TEBVs.

2. Scaffolds

Several techniques are currently being used to create scaffolds
for TEBV, including electrospinning, tissue decellularization,
self-assembling vessels and others.

2.1 Electrospinning
Electrospinning technology is extensively applied to scaffold
fabrication in tissue engineering and has several advantageous
properties, which include a highly interconnected porous
network, a high surface area:volume ratio and nanofiber struc-
tures similar to the native extracellular matrix (ECM) [9]. For
vascular applications, electrospinning can create a seamless
tubular scaffold with adjustable diameters. As shown in
Figure 1A, 4.75 mm diameter of scaffold was fabricated from
poly(epsilon-caprolactone) (PCL)/collagen blend, and the
scaffold possessed a nano-sized fibrous microstructure. A large
number of materials are used in electrospinning, including
natural and synthetic polymers and their blend mixtures.
ECM-derived natural biopolymers, such as collagen [10],
elastin [11-13] and gelatin [14], are used in promoting biocom-
patibility and enhancing attachment and proliferation of
endothelium and SMCs. The synthetic polymers are usually
bioabsorbable materials such as PCL, poly(D,L-lactide-co-
glycolide) and poly-L-lactide that provide initial to long-
term strength to accommodate the physiological environment
of blood flow. Although various electrospun scaffolds have
been fabricated, few of them meet all the requirements of
mechanical strength, burst pressure, suture strength and com-
pliance possessed by successful blood vessels. Electrospun
scaffolds are easily modified with a number of active mole-
cules: platelet-derived growth factor-BB to stimulate SMCs
penetration [14]; heparin to enhance hemocompatibility [15]

and arginine-glycine-aspartic acid to improve endothelial cell
(EC) attachment inside the vascular grafts [16]. Bilayered or
multilayered electrospinning are used to mimic the native
vascular structure to facilitate the formation of a confluent
monolayer of EC in the lumen and SMC penetration through
the scaffold wall [17].

2.2 Decellularized scaffolds
Another approach to prepare scaffolds for tissue engineering is
to decellularize native tissues, such as small intestinal submu-
cosa [18-20], canine aorta [3], porcine arteries [21,22], porcine
abdominal aortas [23] and human umbilical arteries [24]. Decel-
lularized blood vessels have the advantage of preserving native
ECM components that are necessary for cell adhesion, migra-
tion and proliferation. These acellular scaffolds possess the
mechanical properties to endure normal blood pressure.
Different animal species were implanted with TEBV made
from decellularized scaffolds to be used as arterial and

coronary bypasses, which were patent for several months
[21,22,24-26]. Several shortcomings to the decellularized scaffold
have been encountered, including the potential transmission
of animal pathogens, lack of control over ECM composition
and architecture, tissue degradation leading to deteriorating
structural graft failure and inadequate migration of cell due
to the tight matrix organization [3,27].

2.3 Cell self-assemble vascular graft
Cell self-assembling scaffolds are composed of autologous
cell-derived ECM sheets harvested from in vitro cultures [28].
Manipulating such cell-derived ECM sheets allows the forma-
tion of tubular vascular grafts [29]. Such grafts have shown
high patency and have been used in a human clinical trial as
arteriovenous (AV) shunts for hemodialysis access [30,31].
Although the cell self-assembling vessels showed promising
results in early clinical applications, they require extensive
in vitro culture (about 6 -- 9 months) and high cost (over
$15,000/graft) [32]. Self-assemble approach was used in fabri-
cating another type of TEBV, combined with prototyping
imprinting technique, in a ‘bottom-up’ approach [33]. Multi-
cellular spheroids were printed into a designed pattern on an
agarose mold, and following several days in culture, the sphe-
roids fused together to form an ECM-bound construct. The
major drawback of this approach is the difficulty in control-
ling cell distribution within the vascular construct, especially
the formation of a monolayer of EC.

2.4 Biosynthetic vascular graft
To reduce the culture time of the self-assembling method, an
alternative method was developed, where allogeneic SMCs
were cultured on rapidly degrading polyglycolic acid (PGA)
tubular scaffolds over 8 -- 10 weeks to form the wall of the
bioengineered vessel [34,35]. The bioengineered vessel was sub-
sequently decellularized, leaving only cell-secreted ECM in
the scaffold, which was seeded with autologous endothelial
progenitor cells (EPCs) to obtain a non-thrombogenic vascu-
lar graft that resisted intimal hyperplasia [35]. Preclinical trials
of these grafts were successful in canine [34] and porcine [35]

models, and clinical trials are pending.

2.5 Other methods to prepare vascular scaffolds
Phase separation and solvent extraction have been used in fabri-
cating porous scaffolds that improved cell penetration into the
scaffold [36,37]. Collagen and elastin hydrogels have also been
used for vascular scaffold fabrication. Suspensions of collagen
and elastin have been freeze-dried in annular molds and have
yielded tubular scaffolds with high porosity, small diameter,
micron-scaled pores. While these scaffolds were biocompatible,
the resultant mechanical properties were poor [38].

3. Cell sources

Cell-seeded vascular grafts have shown much greater patency
compared to unseeded grafts [8,27,39]. ECs are a crucial
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component of the blood vessel that provides an interface
between the blood and the blood vessel wall [22]. A confluent
and functional monolayer of endothelium is anti-
thrombogenic and can prevent the development of pseudoin-
timal hyperplasia and inflammatory response by: i) releasing
nitric oxide (NO) and prostacyclin (PGI2) to regulate platelet
adhesion and activation; and ii) producing tissue-type plas-
minogen activator (t-PA) to degrade fibrin material and dis-
solve the blood clot [39,40]. ECs can minimize SMC
proliferation and prevent intimal hyperplasia by releasing fac-
tors such as NO, prostaglandins [41] and heparin-like substan-
ces [42]. ECs have limited capacity for regeneration in the
elderly and diseased populations [43]. EPCs can be collected
from peripheral blood and bone marrow aspirates; moreover,
EPCs can be differentiated in vitro to mature and functional
ECs [22,44]. Kaushal et al. seeded sheep EPCs on decellularized
porcine arterial segments and implanted the bioengineered
blood vessels as a carotid artery interposition graft in sheep [22].
The explanted grafts exhibited contractile activity and NO-
mediated vascular relaxation similar to native carotid arteries.

Vascular SMC and FB are essential for the proper function
and mechanical strength of a blood vessel. SMC and FB play
an important role in maintenance of a stable EC intimal

layer [27], while the ECs recruit SMC precursors (pericytes)
and induce them to become functional SMCs during vessel
maturation [45-47].

Stem cells represent an alternative cell source for TEBV.
Examples include bone marrow mononuclear cells (BM-
MNC) [48,49], mesenchymal stem cells [50-52] and induced
pluripotent stem cells [8]. The advantage of stem cells is their
self-renewal and proliferative capabilities. By subjecting stem
cells to a differentiation period in culture, all vascular cells
needed for a blood vessel can be obtained [48,50,53]. Application
of stem cells on TEBV remains in the early stages and is limited
by barriers, such as the isolation, enrichment and expansion of
fully differentiated stem cell populations and understanding
the long-term fate of the stem cells after implantation [54,55].

4. Conditioning approaches

Conditioning of TEBV by applying mechanical stress on the
vascular neo-tissue is required for proper blood vessel tissue
development and maturation [56-59]. Once implanted, TEBVs
face two main types of mechanical forces: i) stretching of the
vessel as a result of blood pulsation; ii) shear stress caused by
the flow of blood through the vessel. These forces enable the
TEBV to achieve the mechanical properties, such as ultimate
tensile strength and modulus [60,61], needed to support SMC
proliferation, differentiation and ECM remodeling [62]. In
addition, shear stress induces ECs to release endothelial NO
synthase, prostaglandin 1 [63], thrombomodulin, heparin,
and t-PA [64-66] that influences cell morphology and function
[63-66] to support blood vessel patency.

TEBV conditioning is a complex process, and recent exten-
sive research has led to the design of in vitro flow systems,
collectively called bioreactors, which has enhanced TEBV
development and function. For example, Yazdani et al.
manipulated TEBV functions through the delivery of adjust-
able flow rates and pressure profiles [63,67]. More advanced
bioreactor systems allow implementation of further adjust-
ments, such as incremental flow changes in the outer layer
compartment [68] and dynamic seeding of cells [69]. Figure 2

shows our bioreactor system, where the flow pattern is con-
trolled by a rotary pump, while the medium outside of scaf-
fold remains static. This system mimics blood flow in vivo
and supports the conditioning of the TEBV in a dynamic
environment.

Conditioning may not be a necessary step to construct a
TEBV, as evidenced by two clinical trials in which TEBV
were developed and did not require mechanical precondition-
ing [8,31]. Mechanical stress applied during the conditioning
phase has been demonstrated to support the maturation of
TEBV and may reduce the potential risk of failure in vivo.
Vessel stretching through pulsation improves mechanical
properties, such as ultimate tensile strength and modulus
[56-61], as well as enhances SMC proliferation and ECM
remodeling [62,70,71].

A. B. C.

Figure 1. Illustration of tubular scaffold fabricated from poly

(epsilon-caprolactone)/collagen using the electrospinning

techniques, (A) gross appearance; (B) cross-section and

(C) microstructure.

Rotary pump

Bioreactor system

Figure 2. Bioreactor system for tissue-engineered blood

vessel is shown. Tubular scaffolds are fitted inside the

bioreactor and the flow pattern for conditioning is

controlled by rotary pump.

Bioengineered blood vessels
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5. TEBV assessment

Before TEBV can be used clinically, more testing is needed to
evaluate safety and efficacy. Several criteria are used to deter-
mine TEBV function: i) mechanical compatibility, including
elasticity, suture retention, burst pressure and compliance, to
ensure graft endurance of dynamic changes, while avoiding
mechanical mismatch that could lead to graft failure [72,73];
ii) cell distribution to achieve a monolayer of EC in the inti-
mal layer, SMC in the medial layer [60] and FB in the adven-
titial layer, as well as appropriate cellular response to external
stimulation [64,74]; iii) functional compatibility, including
patency and flow profile to avoid hyperplasia, aneurism or
plaque formation after implantation [31,44,75].
The maturation of TEBV in vivo is a complex process that

requires a set of chemical and physical stimulations to control
scaffold degradation and reorganization of ECs and
SMCs [76,77]. Monitoring the maturation of TEBV may be
achieved through destructive and nondestructive (noninvasive)
manners. Methods that require the ‘sacrifice’ of the samples
include histology and molecular analyses, whereas noninvasive
methods, such as MRI [78,79], ultrasound, X-ray CT imaging
and optical imaging, allow real-time and repetitive measure-
ments of a single sample [78,80]. Ultrasound has a relatively low
resolution (sub-millimeter) and is commonly used for macro-
scopic imaging to determine vessel graft patency and flow
patterns or to grossly monitor ECM production [80], whereas
X-ray CT scans provide greater resolution but may require
longer scanning time to visualize at the cellular level [80]. Since
TEBV maturation involves complex interplays between cells
and their changing environment, a noninvasive imaging system
that provides information at a cellular level would allow for opti-
mization of TEBV preparations. MRI can provide cellular-level
imaging with the proper labeling but is limited by depth of
penetration and the unknown effect of labeling agents [78]. Opti-
cal coherence tomography can provide information about ECM

changes in vascular graft but is limited in resolution [81]. Optical
imaging techniques, including multiphoton imaging [82], two
photon and confocal microscopy, have the potential to monitor
individual fluorescently labeled cells [83]; however, these techni-
ques have a limited penetration depth, which limits their appli-
cation in TEBV monitoring. Our laboratory has recently
developed an optical fiber-based fluorescence imaging system
(Figure 3A) [84,85], which decouples the excitation from the opti-
cal fiber and the detection. This approach has the potential to
achieve deeper penetration and longer working distance than
standard microscopy; further, this technology yields real-time
information regarding cell morphology and function and could
be applied to both in vitro and in vivo systems Figure 3B-C.

6. Preclinical and clinical studies with TEBV

Although great advances have been made over the past three
decades, many TEBV prototypes remain at the preclinical
stage in mouse [86], rat [49,50], rabbit [87], ovine [22,47],
canine [34,35,48] and porcine [23,88] models. To date, two clini-
cal trials have been initiated for venous and pulmonary circu-
lation and for AV shunt. In the first trial, vascular grafts
composed of PGA and e-caprolactone or L-lactide were
seeded with autologous BM-MNCs and resulted in less than
one-fifth developing stenosis failure within 7 years of implan-
tation [8]. In the second trial, the TEBVs were fabricated using
the cell self-assembling method [31]. The grafts were
implanted as a shunt between the brachial artery and the axil-
lary vein in 10 patients with end-stage renal disease, and 50%
of patients had a graft functioning for hemodialysis
6 -- 20 months after implantation. Comparing the two trials,
one may conclude that partial success can be achieved with
different types of TEBV. It is possible that based on patient
classification and the specific graft application, different types
of vascular grafts should be considered and tailored to specific
clinical requirements.

A. B.

C.

Figure 3. A. A picture of the assembled optical fiber-based imaging system is shown. Fluorescently labeled cells were imaged.

B. Fluorescently labeled cells, seeded on a PCL/collagen scaffold, are imaged from the top camera (control image).

C. Reconstructed image of the fluorescently labeled cells through a 600 µm thick PCL/collagen scaffold.
PCL: Poly(epsilon-caprolactone).
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7. Conclusion

TEBV provides an alternative to synthetic vascular grafts,
which currently yield unsatisfactory results, in the treatment
of CVD. The requirements for both cell compatibility and
mechanical properties have yielded a variety of scaffold types
and cell sources that can be considered as a biologically
responsive vascular graft replacement [89]. While each type of
scaffold provides advantages, meaningful progress will require
integration of multiple fabrication approaches, such as elec-
trospinning of PGA combined with self-assembly of cells
and decellularization [90]. Leveraging the potentials of vascular
progenitor and stem cells could provide a solution to the
repopulation of the scaffold in achieving proper function.
Modifications such as mechanical preconditioning and con-
trolled release of cytokines are a valuable approach to further
improve TEBV function. Further, better understanding of
cellular responses to environmental changes will aid optimiza-
tion of the fabrication process in achieving long-term

functional TEBVs. Recent clinical studies have shown a great
promise for the use of TEBV as a treatment option for a vari-
ety of vascular disease conditions. Widespread clinical use of
TEBVs to treat vascular diseases might gain approval follow-
ing multicenter safety and efficacy trials that utilize ‘off-the-
shelf’ (short preparation time) products that would reduce
manufacturing costs and could be mass-produced.
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