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Introduction: The number of pulmonary diseases that are effectively treated

by aerosolized medicine continues to grow.

Areas covered: These diseases include chronic obstructive pulmonary disease

(COPD), lung inflammatory diseases (e.g., asthma) and pulmonary infections.

Dry powder inhalers (DPIs) exhibit many unique advantages that have

contributed to the incredible growth in the number of DPI pharmaceutical

products. To improve the performance, there are a relatively large number

of DPI devices available for different inhalable powder formulations. The rela-

tionship between formulation and inhaler device features on performance of

the drug--device combination product is critical. Aerosol medicine products

are drug--device combination products. Device design and compatibility

with the formulation are key drug--device combination product aspects in

delivering drugs to the lungs as inhaled powders. In addition to discussing

pulmonary diseases, this review discusses DPI devices, respirable powder

formulation and their interactions in the context of currently marketed DPI

products used in the treatment of COPD, asthma and pulmonary infections.

Expert opinion: There is a growing line of product options available for

patients in choosing inhalers for treatment of respiratory diseases. Looking

ahead, combining nanotechnology with optimized DPI formulation and

enhancing device design presents a promising future for DPI development.

Keywords: dry powder inhaler devices, dry powder inhaler products, inhalable powders,

pulmonary drug delivery, solid-state formulation
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1. Introduction

Lung disease is a worldwide medical condition with millions suffering from a
considerable number of pulmonary disorders. The complexity of lung disease is
complicated by the organ itself with various components including the large and
smaller lung airways, the deep lung alveolar region, the interstitium and pulmonary
vasculature. Patients can suffer from one or more pulmonary diseases coexisting
together. The immensity of lung disease is described by the World Health Organi-
zation, which estimated in 2004 that 235 million people suffered from asthma [1]

while chronic obstructive pulmonary disorder (COPD) affected an estimated
64 million people worldwide [1]. More than 3 million people died of COPD in
2005 (equal to 5% of all deaths globally that year) [1]. In the past decade, lower
respiratory infections and COPD have contributed to significantly larger number
of death in the world [2].
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Although there are several potential risk factors in the devel-
opment of COPD, the primary cause continues to be tobacco
smoking [3]. There is mounting evidence that childhood
asthma is a risk factor for developing COPD later in life [4].
COPD can affect both the lower airways and the tissue paren-
chyma, contributing to the phenotypic characteristics, such as
airway obstruction and emphysema. Environmental factors
and occupational exposures that influence air quality play a sig-
nificant role in the disease process [5-12]. Recent reports suggest
that a warming climate may be a contributing factor in chronic
lung disease in general, including asthma and COPD [5,6].
These exposures over time result in physiologic alterations as
visualized by bronchoscopy, shown in Figure 1.
In the setting of incessant lung disease, chronic airway inflam-

mation results with some lung diseases associated with chronic
infection as well, which leads to a never-ending cycle. Acute bac-
terial and viral infections can heighten the infectious and inflam-
matory state of pulmonary disorders. Viral infections in the
setting of chronic bacterial infections were associated with
more severe acute exacerbation of diseases like asthma and
COPD [11]. Figure 2 demonstrates this acute on chronic state
that is often seen. With barriers and physiologic alterations
that are ever-changing in the setting of chronic lung disease,
therapeutic delivery is often beneficial with direct application

to the lung. A lung disease with significant research regarding
the direct application of pharmaceuticals, especially antimicro-
bial, to the lower airways through aerosols includes cystic fibrosis
(CF). Patients afflicted with CF eventually develop bronchiecta-
sis due to impaired mucociliary clearance leading to accumula-
tion of mucopurulent secretions and subsequent chronic
bacterial colonization with Pseudomonas aeruginosa (Figure 3).

Exploration of inhalation aerosols for drug delivery has
contributed vastly in treating pulmonary diseases for decades.
Various inhalation delivery systems have been developed to
treat lung diseases such as asthma, CF and pulmonary infec-
tions. Among them, nebulizers (‘nebs’) and pressurized
metered dose inhalers (pMDIs) were the main inhalation
aerosol delivery systems to treat respiratory illness for several
decades until dry powder inhalers (DPIs) began to reappear.
Interestingly, inhalation of powders has been used for many
centuries dating back to ancient times by the ancient
Egyptians and Greeks. In the 19th century, Newton and
Nelson each patented a DPI [10], after which the inhalation
aerosol therapy took a detour away from DPI until 1948,
when Abbott introduced Aerohalor for penicillin [10].
Although drug delivery through inhalation was achieved
many years ago, dose control was poor [13]. When the pharma-
ceutical industry succeeded in delivering controlled doses of
drug, there was no looking back. Treatment of pulmonary
diseases, especially asthma, was revolutionized.

Today, drug delivery has come a long way in successfully
delivering drug to the lungs not only for local action but
also for systemic application. Yet, inhalation aerosol drug
delivery faces challenge in achieving consistent dose delivery
and toxicity related to higher dosages delivered to the lungs.
The four major classes of inhalation aerosol delivery systems
are nebulizers, pMDIs, soft-mist inhalers and DPIs. Each
has its own advantages, disadvantages and limitations in
regard to the type of formulation that can be used, the types
of drugs that can be used, and the amount of respirable dose
that can be generated from these devices. In the past two
decades, respiratory drug delivery has focused on two main
aspects of drug delivery: replacing chlorofluorocarbon propel-
lants and methodology to increase drug bioavailability.
Hydrofluoroalkane propellant and DPI have come to the res-
cue in replacing chlorofluorocarbon propellant [14], while
nanotechnology continues to be explored for targeted pulmo-
nary delivery [15]. However, the challenge that still exists is
achieving higher fraction of respirable drug and consistency
in dose delivery. Part of the challenge stems from the operat-
ing principles of the devices. Other challenges are formulation
optimization, patient noncompliance, incorrect handling of
the inhaler device, wrong choice of treatment option and
patient’s personal preference to certain device types.

2. Inhaler selection

There is no hard and fast rule for the choice of inhaler for a
given disease. Choosing the right inhaler device can be the

Article highlights.

. Targeted pulmonary drug delivery as inhalation aerosols
has been demonstrated to be essential in effectively
treating respiratory diseases and is the primary delivery
system used clinically in the treatment and prevention of
pulmonary diseases such as asthma, chronic obstructive
pulmonary disorder (COPD), certain pulmonary
infections, and pulmonary inflammation.

. The choice of correct inhaler devices plays an important
role in successful treatment.

. Dry powder inhaler (DPI) pharmaceutical products are
classified as drug--device combination products. Dry
powder inhalers (DPIs) are compact, easy to use and
exhibit superior physicochemical stability properties with
effective performance to successful targeted clinical
treatment of pulmonary diseases.

. Prescribed therapies for COPD and asthma are similar;
hence, many DPI products are prescribed for both
conditions. Dual drug combination inhalation aerosol
products are well accepted by patients and provide
enhanced therapy due to co-deposition of both drugs at
the same target site promoting synergistic
therapeutic effects.

. Particle engineering techniques and nanotechnology are
contributing in developing high-performing DPIs with
controlled drug release and enhanced targeting to
specific lung regions.

. Powder formulation physicochemical characteristics, solid-
state particle properties, deaggregation and dispersion
mechanisms, DPI device resistance, the patient’s
inspiratory flow rate, and DPI device anatomical design all
influence aerosol performance of DPIs.

This box summarizes key points contained in the article.
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first step toward successful treatment. Pathology of every dis-
ease is different; similarly, performance and operation of every
inhaler (powder vs liquid based) are different [16,17]. Further
complication includes that the pathology of certain diseases
renders patients with decreased ability to perform the
functions required for successful treatment. Hence, careful
consideration has to be given in choosing the inhaler device
since different devices have different techniques, and prescrib-
ing more than one type of inhaler may confuse some patients
(e.g., prescribing both a pMDI and DPI [18]). On the other
hand, not all medications are available in all inhaler types,
thus confining the inhalers that can be used for multi-drug
treatment in certain diseases.

In prescribing a DPI, inspiratory efficiency of the patient is
a vital consideration since all DPI products currently on the
market are dependent on patient inspiratory flow. The
current methods available to assess the inspiratory flow of
patients are checklist method and Clement Clarke check-in
dial�. A ‘3W-H’ approach is suggested, where by answering
the questions of who? what? where? and how? can help decide
the right treatment options [18]. Recently, an acoustics/sound-
based methodology has been developed to assess patients’
inhalation technique [19]. This technique can be used by
physicians to understand a patient’s inhalation effort during
treatment. This would better help the physicians to decide
on the patients’ ability to use the inhaler and advice appropri-
ate technique to achieve optimal therapy [19]. Moreover, the
device chosen should be suitable for the patient during stable
and unstable conditions [18].

A major contributor to the success of inhaled therapy is
proper and correct use of the device chosen for therapy.
There are several reports regarding the improper use of
various inhaler devices [16,20-22]. Hence, it is of the utmost
importance for every patient to understand the technique
of handling inhaler. It becomes important to have appropri-
ately trained professionals to educate patients about proper
use of the device to minimize user error. Patients prefer
inhalers that are small sized, portable, convenient and sim-
ple to use [23]. Some devices have readable dose counters
that aid patients in tracking doses administered and doses
remaining, so as to prevent underdosing or accidentally
overdosing. Disease state management is enhanced when
patient compliance to prescribed therapy is achieved, and
this in turn reduces overall healthcare costs and patient
morbidity and mortality. Favorable aspects in patient inha-
lation aerosol therapy can be correlated with reduced dosing
frequency, inhaler technique, and patient satisfaction that
includes ease of use [23].

3. Dry powder inhalers

Pulmonary drug delivery continues to demonstrate steady
growth in the global market. According to market research
reports, the DPI market was $6.6 billion in 2010 [24] and
reached $17.5 billion in 2013 [25]. It is expected to grow to

A.

B.

Figure 1. Image on bronchoscopy of normal carina in the

trachea (A) and complication of chronic obstructive pulmon-

ary disease, saber sheath trachea (B).

Figure 2. Image on bronchoscopy of the right main

bronchus in a patient with chronic obstructive pulmonary

disorder with acute pneumonia. The lower airway mucosa is

denuded with mucopurulent secretion that later cultured

Staphylococcus aureus.
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$31.5 billion in 2018 at a compound annual growth rate of
12.5% [25]. The need for improved treatment of various pul-
monary diseases is the driving force for increased DPI research
and growth of DPI pharmaceuticals. Inhalation of respirable
powders by DPIs has found a strong niche in pulmonary
drug delivery. Advantages of DPI include solid-state physical
and chemical drug formulation stability, more inhaler device
design options for testing with different formulations, ease
of use [23], portability compared to nebulizer [17], absence of
liquid propellants [17,26] and hand--lung coordination [17,26]

compared to pMDI, noninvasiveness compared to intrave-
nous administration, ability to include long-acting hydropho-
bic water-insoluble drugs [27] and the ability to achieve higher
fraction of deep lung deposition [17,28]. Yet, some DPIs exhibit
some limitations owing to the need of patient’s inspiratory
effort for aerosol generation [17], and different DPI devices
have significantly different design anatomies that make
standardized comparisons across all DPI devices difficult,
and moisture sensitivity of the powders [17]. Additionally,
there are opportunities for errors in DPI management and
handling by patients, such as incorrect loading of the
device [17], failure to pierce the capsule [17], inappropriate
inhalation method [16,17], improper storage [17], variability in
device techniques, cost and improper inhaler positioning [16].

Nevertheless, the advantages of DPI can outweigh the han-
dling errors if patients are properly trained.

4. DPI for respiratory diseases

Asthma is a multifactorial inflammatory lung disease that
features both bronchoconstriction and airway inflammation.

Various forms of asthma (mild, moderate, severe) are known
to exist and are thought to be due to genetic or environmental
factors. When treated solely by the oral route, asthma was not

so effectively treated, but the inhalation of aerosols has
significantly altered the course of the disease and is now the
first-line treatment for decades. Treatment of asthma involves

preventive measures where the patient is given daily medica-
tion doses for prevention of asthmatic attacks and to stabilize

long-term pulmonary function. Acute treatment (i.e., ‘rescue’)
is given to stop an acute exacerbation, which can be life-
threatening, where the patient experiences difficulty in

respiration due to severe bronchoconstriction. Asthma man-
agement is individualized based on symptomology, severity

and frequency of exacerbations, lung function and other
factors. COPD is a progressive inflammatory disease charac-
terized by airflow limitation. Commonly prescribed medica-

tions for both asthma and COPD are inhaled corticosteroids
(i.e., anti-inflammatory), bronchodilators, leukotriene recep-

tor antagonists, mast cell inhibitors, anticholinergics, musca-
rinic antagonists and methyl xanthine preparations [28,29].
Narcotic opiates have been reported as palliative measure for

end-stage COPD [30]. Therapies used in the treatment of
COPD and asthma are similar but the nature of inflammation

and cells involved may affect the outcome of treatment [31].
Corticosteroids (anti-inflammatory) are the choice to control
inflammation in asthma while its use in COPD is controver-

sial. Bronchodilators (b2 agonist, anticholinergics, theophyl-
line) are central to reduce COPD symptoms and useful in
treating asthma [31]. Bronchodilators include LABAs (i.e.,

long-acting b2 agonists, duration of action 12 h [32]) for
preventative maintenance therapy and SABAs (i.e., short-

acting b2 agonists, duration of action 2 -- 6 h) for rescue
(fast-acting treatment) of acute asthma exacerbation. There
are successful combination products of inhaled corticoste-

roids/LABA to treat asthma; however, this recent study might
open doors in research for their use in COPD too [33]. Tables 1

and 2 list the drugs that are marketed for asthma and COPD
as DPIs. There are additional products approved for systemic
therapeutic action through delivery by the pulmonary route of

administration, which are currently Afrezza� for diabetes type
I/II and Adasuve� for CNS therapy. Figure 4 shows the chem-

ical structures of some currently marketed pulmonary drugs.
Acute respiratory infections are caused by several microor-

ganisms including viruses, bacteria, fungi, parasites and
protozoa [34]. Among these, viruses and bacteria are the most
common for causing respiratory infections. Occasionally,
respiratory infections can be chronic or a comorbidity of other

A.

B.

Figure 3. Image on bronchoscopy of the right upper lobe in a

patient with cystic fibrosis who had diffuse mucopurulent

secretions that later cultured Pseudomonas aeruginosa

(A) and underlying lower airway mucosal inflammation

after removal of secretions (B).
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diseases (i.e., a secondary lung disease concomitantly existing
with the primary lung disease). For example, chronic bacterial
infections of the lung significantly contribute to the progress
of CF, while acute viral infections can result in exacerbating
the majority of pulmonary disorders, such as asthma,
COPD and CF. In CF, chronic respiratory infections require
administration of antibiotics [35], while influenza and pneu-
mococcal are advised in pulmonary disorders [36].

4.1 Types of DPIs
DPIs are classified into different types according to their
metering system or dispersion mechanism or their device
design. Based on the metering system, they can be unit dose
inhaler dispensing single dose of drug (capsules made of
hydroxyl propyl methyl cellulose or gelatin), multi-unit dose
inhaler dispensing several single doses (blister packs), or multi-
ple dose inhaler dispensing multiple doses of drug (powder
reservoir). Figure 5 shows images of DPI product in market
with the three types of devices. The device design is an impor-
tant factor in deciding its efficiency because the dimensions
and internal anatomy of the device introduce resistance to air
flow. Hence, devices can be classified based on the resistance
into low-, medium- or high-resistance devices. Classification
of devices based on their resistance has not gained importance
as much as dispersion mechanism has. However, this classifica-
tion of devices would aid in the selection of correct inhalers

that is appropriate to patient condition and ability. On the
basis of drug dispersion, devices can be active or passive, where
active dispersion of the drug is aided by mechanical or electri-
cal means, while passive dispersion of the drug is brought
about by patient inspiratory flow [37-39]. Therefore, success of
passive DPI depends on patient’s ability to generate an inspira-
tory flow rate (IFR) that is strong enough to overcome the
resistance of the inhaler and set particles in motion. Table 3 is
selected list of DPI devices with their classification. A DPI
product is a combination of the drug formulation and the
device used to dispense it. Hence, metering and dispersion clas-
sifications are more appropriate to drug products while resis-
tance classification is for the device alone. Device resistance
plays an important role in successful therapy and is described
in detail in Section 5.2 Device Resistance.

5. DPI functionality

Drug delivery from DPI involves fluidization (aerosolization),
de-aggregation, dispersion and deposition of particles into the
lung. There are three main forces responsible for these activi-
ties: interparticulate forces between the powder particles,
dispersion forces generated during inhalation, and deposition
forces in the respiratory tract. A DPI product is made up of a
device, drug formulation and metering system. The influence
of device design and drug formulation with respect to the

Table 1. Listing of DPI products currently on the US market (i.e., approved by the US FDA) [101].

Drug product Drug Manufacturer Condition Metering Dosing

Breo� Ellipta� Fluticasone furoate +
vilanterol

GlaxoSmithKline/
Theravance

COPD Multi-unit dose Once a day

Tudorza� Pressair� Aclidinium bromide Forest Pharmaceuticals,
Inc./Almirall

Bronchospasm Multidose Twice daily

Arcapta� Neohaler� Indacaterol Novartis COPD Unit dose Once a day
Pulmicort� Flexhaler� Budesonide Astrazeneca Asthma Multidose Twice daily
Flovent� Diskus� Fluticasone propionate GlaxoSmithKline Asthma Multi-unit dose Varies
Foradil� Certihaler� Formoterol fumarate Novartis Asthma,

bronchospasm
Multidose Twice daily

Foradil� Aerolizer� Formoterol fumarate Novartis/Merck Asthma, EIB, COPD Unit dose Twice daily
Asmanex� Twisthaler� Mometasone furoate Merck (Schering corp.) Asthma Multidose Varies
Serevent� Diskus� Salmeterol Xinafoate GlaxoSmithKline Asthma,

bronchospasm,
EIB, COPD

Multi-unit dose Twice daily/
before exercise

Advair� Diskus� Fluticasone propionate +
salmeterol xinafoate

GlaxoSmithKline COPD, asthma Multi-unit dose Twice daily

Spiriva� Handihaler� Tiotropium bromide Boehringer Ingelheim/
Pfizer

COPD Unit dose Once a day
(two inhalations)

Incruse� Elipta� Umeclidinium GlaxoSmithKline COPD Multidose Once a day
TOBI� Podhaler� Tobramycin Novartis Pulmonary

infection
Multi-unit dose Twice daily

(inhale 4 capsules)
Anoro� Ellipta� Umeclidiunium +

vilanterol
GlaxosmithKline/
Theravance

COPD Multi-unit dose Once a day

Relenza� Diskhaler� Zanamivir GlaxoSmithKline Viral infection
(prophylaxis)

Multi-unit dose Once a day
(two inhalations)

Notes: i) Unless otherwise specified all doses are one inhalation; and ii) varies in dosing means there is no fixed dose, the dosing depends on disease condition or

concurrent medications.

CF: Cystic fibrosis; COPD: Chronic obstructive pulmonary disease; EIB: Exercise-induced bronchospasm.
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above said forces, on product performance, is discussed in
this section.
A DPI device consists of an air entry port, drug-holding

chamber and a mouth piece. The different aspects of an
inhaler including pressure drop, resistance, and so on are
related to one another in determining the overall performance
of the device. From a device perspective dimensions, shape,
fluid mechanics, air flow pattern, interaction with the formu-
lation contributes to performance characteristics [40]. The
physicochemical factors of the drug formulation that affect
DPI performance include particle size, shape, density, surface
roughness, surface area and morphology, and crystallinity
[40-43]. Surface roughness of carrier particles increases the per-
formance of a DPI [43], whereas the aerodynamic particle size
distribution generated from a passive DPI device depends
(inversely) on patient’s IFR [44].

5.1 Fluidization and de-aggregation
Fluidization (aerosolization) and de-aggregation of powder
from the inhaler is the foremost step in determining efficiency
of an inhaler. The mechanism of DPI fluidization includes
shear, capillary and mechanical forces (vibrational, impac-
tion) [45]. Shear force fluidization is important in passive

devices, which is caused by air flow velocity in the device [45].
This was studied using two marketed passive DPI devices, the
Handihaler� and Cyclohaler� (Aerolizer�) [46]. The Handihaler�

exhibited high-velocity inlet air that pushed the capsule away from
the air inlet point, while a low pressure created at the base
of the capsule pulled it down. Repetition of this push-
and-pull motion caused radial vibration and pressure dif-
ference that entrained the powder from the capsule. In
the Cyclohaler�, the air inlet was tangential to the capsule,
which created a tangential pressure drop and eventually
swirling movement of capsule. It was also observed that
the influence of airflow was more pronounced in the Hand-
ihaler� than the Cyclohaler� [46]. This study suggested that
aerosolization is improved by increasing the velocity of air
or causing a pressure drop. Air velocity can be increased
when patient inhales at a higher rate and pressure drop
can be achieved with the device design [41]. Figure 6 shows
the difference in design between Handihaler� and Cyclo-
haler� (Aerolizer�). From a solid-state formulation perspec-
tive, aerosolization of a powder also depends on other factors
like particle interactions. The interaction between active
pharmaceutical ingredient (API) and excipient(s) is influ-
enced by the manufacturing process, which can also create

Table 2. Listing of DPI products currently in European market [102].

Drug product Drug Marketed by Condition Dosing

Bretaris�/Eklira� Genuair� Aclidinium bromide Almirall, S.A COPD Twice a day
Hirobriz�/Onbrez�/Oslif�

Breezhaler�
Indacaterol maleate Novartis Europharm Ltd. COPD Once a day

Relvar� Ellipta� Fluticasone furoate
and vilanterol

GlaxoSmithKline COPD/Asthma Once a day

Enurev�/Seebri�/Tovanor�

Breezhaler�
Glycopyrronium bromide Novartis Europharm Ltd. COPD Once a day

Ultibro�/Xoterna�
Breezhaler�

Glycopyrronium
bromide/indacaterol

Novartis Europharm Ltd. COPD Once a day

TOBI� Podhaler� Tobramycin Novartis Europharm Ltd. Lung infection Twice a day*
BiResp� Spiromax� Budesonide/formetrol

fumarate
Teva Pharma Asthma and COPD Varies with severity

Bronchitol� Mannitol Pharmaxis Pharmaceuticals Ltd. CF Twice dailyz

Colobreathe� Turbospin� Colistimethate sodium Forest Labs UK Ltd Lung infection/CF Twice daily
DuoResp� Spiromax� Budesonide/formetrol

fumarate
Teva Pharma Asthma/COPD Varies with severity

Incruse Ellipta� Umeclidinium bromide GlaxoSmithKline COPD Once a day
Laventair� Ellipta� Umeclidinium bromide

and vilanterol
GlaxoSmithKline COPD Once a day

Ulunar� Breezhaler� Indacaterol and
glycopyrronium

Novartis Europharm Ltd COPD Once a day

Budelin� Novolizer� Budesonide Meda Pharmaceuticals Ltd. Asthma Once/twice a day
Salbulin Novolizer� Salbutamol Meda Pharmaceuticals Ltd. Asthma Varies with severity
Asmasal� Clickhaler� Salbutamol sulfate Recipharm Ltd Asthma Four times a day
Buventol Easyhaler� Salbutamol Orionpharma Asthma/COPD N/A
Beclomet Easyhaler� Beclometasone Orionpharma Asthma/COPD N/A
Giona Easyhaler� Budesonide Orionpharma Asthma/COPD N/A

*Four capsules per inhalation.
zTen capsules per inhalation.

CF: Cystic fibrosis; COPD: Chronic obstructive pulmonary disorder; N/A: Information not available.
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Umeclidinium bromide Indacaterol

Aclidinium bromide

Formoterol fumarate

Vilanterol

Mometasone furoate

A. B.

C. D.

E.

F.

Figure 4. Chemical structures (ACD/ChemSketch 2012, version 14.01, Advanced Chemistry Development, Inc., Toronto, Canada)

of example drugs made into dry powder aerosol: (A) Umeclidinium bromide; (B) Indacaterol; (C) Aclidinium bromide;

(D). Mometsone furoate; (E) Formoterol fumarate; and (F) Vilanterol.
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‘surface hot spots’ (i.e., high-- surface-energy active sites) [40]
that can lead to particle aggregation. Particle interaction is
attributed to intermolecular forces between particles,
mainly adhesive/cohesive forces such as electrostatic attrac-
tion, van der Waals interaction and capillary forces [45].
Among these, van der Waals force is a short-range force,
electrostatic is a long-range force and capillarity is humidity
dependent. Exact measurement of parameters leading to
these forces is difficult; however, particle size is a common
factor that is involved in measuring these forces [45]. The
force required to fluidize the powder depends on the resis-
tance of the device and patient inspiratory flow, which is dis-
cussed later. In any case, the force required to aerosolize a
formulation must be higher than the interparticulate interaction
and the weight of the particles. Alternately, if the particles are less
dense or hollow, it will bemore readily aerosolized [47]. It is note-
worthy to mention that formulation of less-dense or porous par-
ticles is a popular area of research in nanotechnology [48,49].
In general, particles with an aerodynamic diameter (Da)

5 -- 10 µm can enter the lungs with deposition in the larger
airways (i.e., trachea and first several divisions of the bron-
chi) [50]. Aerosol particles with an aerodynamic diameter of
£ 5 µm can efficiently reach the mid-lung region (i.e., larger
non-respiratory bronchioles) and smaller airways (i.e., smaller
non-respiratory bronchioles), while particles £ 2 um can tar-
get the bronchioalveolar (i.e., respiratory bronchioles to the
alveoli) and deep lung alveolar regions. However, particles
of this size are very difficult to handle while processing or
manufacturing [41,51]. Hence, the drug is formulated as an
adhesive mixture or soft spherical agglomerate [41,52]. Adhesive
mixture consists of drug with inert carrier particles where the
drug is distributed over the carrier particle surface. Spherical
agglomerate can be pure drug or drug with excipients (to

improve handling and dosing) [53], which congregate together
to form bigger particles. De-aggregation (de-agglomeration) is
required to separate the particles from the carrier or from the
spherical agglomerate. Inertial forces [54], frictional forces [54],
turbulent shear [54] and collision are the forces that cause de-
aggregation of particles in inhaler. The foremost roadblock
to de-aggregation is interparticulate interaction; nonetheless,
device design also contributes to de-aggregation. An efficient
device design utilizes the energy from patient inspiratory air
flow [52] to increase the residence time of the powder [55] or
cause mechanical impaction of the particles with the device
walls [56] for complete separation of particles. Higher kinetic
energy in the inspiratory air increases inertial and frictional
forces and leads to better separation of particles [54]. A good
example of this is the internal geometry of the marketed
inhaler Aerolizer�, which uses a swirling motion from the
air flow that facilitates the particle--device collision leading
to better separation [56]. Other device features like narrow
mouth piece, impeller and rotating helical blade or grid cause
rotational motion, impaction, shear and turbulence that can
aerosolize and disperse the powder [41,55]. Some recent
advancements in de-aggregation include a device containing
breath-driven rotor that causes agitation/vibration, cyclone
chamber with a mesh to sieve powder [57], reverse cyclone
technology [58] and cyclone separator [41].

5.2 Device resistance
Dispersion of powder from a DPI device requires energy,
which can come from pneumatic, vibrational or mechanical
means [38]. A passive DPI device depends on the patient’s
IFR for the required energy to disperse the powder while an
active DPI device uses mechanical (vibration, impact force,
compressed air, impellers) or electrical source built in the
device (i.e., not dependent on the patient’s IFR) [39]. In a pas-
sive DPI device, the aerosol dispersion and delivery occur
simultaneously, while in the active device it could occur
simultaneously or separately [38]. The forces responsible for
dispersion of the powder in DPI include aerodynamic forces
(drag and lift), inertial forces (vibrational, rotational, centrifu-
gal and collision), and shear and frictional forces [59].

During DPI inhalation, the patient’s inspiratory effort with
the resistance of the device creates turbulent energy, which is
measured as a pressure drop that causes de-aggregation of
powder [60]. The relationship between inhaler device resis-
tance (R) and pressure drop (PD) is given in the following
equation [61]:

(1)

where flow (Q) is directly related to the PD and inversely
related to the R. From this equation, inhalers with higher
resistance can create more turbulence, which is more likely
to assist in de-agglomeration [52]. The different designs and
geometry of devices cause difference in pressure drop and
resistance within the device. There is a critical inspiratory

A. B.

C.

Figure 5. Image of dry powder inhalers (DPIs) with different

DPI device metering systems: (A) Unit dose with the capsule

(Aerolizer�). (B) Prefilled multi-unit dose (Diskus�).

(C) Multiple-dose powder reservoir bed (Twisthaler�).
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pressure (PI) for every device where an inspiratory flow below
PI is laminar and above is turbulent. Hence, it is important for
patients to inhale with pressure higher than PI [62]. Higher
pressure drop in the device causes strong turbulence, which
leads to more shear stress and increased fine particle fraction
(FPF) [60,62]. FPF is the ratio of mass of particles in the aerosol
with aerodynamic diameter (Da) less than equal to 5 µm
(£ 5 µm) to the total mass of emitted particles. Additionally,
the pressure change of high-resistance device is greater than
low-resistance device [60]. All of these factors lead to a design
with higher pressure drop and higher resistance to demon-
strate better inhalation performance in in vitro testing [63]. It
is observed that medium--high-resistance DPI device have
the better lung deposition at pressure drop 2 -- 4 kPa [64]. It
should be noted that device resistance is not the only reason
for good performance, and de-aggregation principle of the
device is equally as important [58]. Equation (1) suggests that
airflow is inversely proportional to device resistance, that is,
high-resistance devices require low flow to create the required
pressure drop. However, there are concerns about using high-
resistance device for patients during exacerbation of asthma or
COPD. Studies have shown that, even during exacerbation,
patients are able to generate the required pressure drop and
achieve better performance in higher-resistance inhaler [52,65].

Drug formulation characteristics affecting dispersion
include particle size, shape and density. Interparticulate forces
also play a vital role where insufficient detachment of drug
from carrier due to strong interparticulate forces can lead to
suboptimal dosing [66]. Spherical particles with narrow size
distribution and smooth surface can decrease solid-state
interparticulate interactions (i.e., mechanical interlocking/
structural cohesion, van der Waals, electrostatic and capillary
forces) by reducing the points of contact between adjacent

particles, thereby increasing dispersion of the formulation [67].
The FPF of currently available DPI varies from 9 to 78.7%
[41]. It is imperative that force generated by DPI device dis-
perses the drug from its aggregate or from the carrier particle
leading to lung deposition.

5.3 Deposition
There are three main mechanisms by which particles deposit
in the lungs, namely impaction, sedimentation and diffu-
sion [14], which in turn is dependent on the particle size.
While larger particles settle in the upper airways by impaction
and sedimentation, smaller particles tend to reach lungs
through diffusion. However, in some cases submicron par-
ticles fail to deposit in the lungs and are exhaled [14]. Nano-
technology and particle engineering techniques are making
immense progress in developing inhalation products that
can improve particle dispersion and lung deposition of the
formulation [26,68,69].

Numerical modeling methods, in vitro and in vivo meth-
ods, have been used by researchers in designing DPI devices.
Some of the methods used in the past are discrete element
method, computational fluid dynamics to predict particle
motion [70], particle deposition [70], inhalation flow stream [56],
pressure profiles [56] and particle trajectories [56,71], g scintigra-
phy to predict particle distribution [72] and particle deposi-
tion [72], single photon emission tomography to predict
particle deposition [73] and particle distribution [73].

6. Other considerations

6.1 Device considerations
Despite all device design and formulation efforts to improve
inhaler performance, retention of drug in the device remains

Table 3. Selected DPI devices currently available in the USA and European Union (US) [14,40,46,59,61,103-109].

Device Type Device resistance Metering Manufacturer

Cyclohaler�/Aerolizer� Passive Low Unit dose Novartis
Spinhaler� Passive Low Unit dose Aventis
Diskhaler� Passive Low Multi-unit dose GlaxoSmithKline
Breezhaler� Passive Low Unit dose Novartis
Turbuhaler� Passive Medium Multidose AstraZeneca
Diskus� (Accuhaler) Passive Medium Multi-unit dose GlaxoSmithKline
Podhaler� Passive Medium Unit dose Novartis
Genuair�/Pressair� Passive Medium Multidose Almirall,S.A
Turbospin� Passive Medium Unit dose PH&T
Novolizer� Passive Medium Multidose ASTA MEdica
Handihaler� Passive High Unit dose Boehringer Ingelheim
Easyhaler� Passive High Multidose Orion
Clickhaler� Passive High Multidose ML Labs
Pulvinal� Passive High Multidose Chiesi Ltd.
Prohaler� Passive High Multi-unit dose Aptar Pharma
Orbital� Passive High Multi-unit dose Pharmaxis
Eclipse� Passive High Unit dose Aventis Pharma
Certihaler� Passive N/A Multidose SkyePharma
DreamBoat� Passive N/A Multi-unit dose MannKind Corporation

Note: N/A: Information not available.
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to be a concern that can potentially lead to underdosing. The
FPF of a DPI is anywhere between 20 and 30% [74], compared
to device retention up to 15 -- 60% in another study [75].
Reducing device retention and enhancing the emitted dose
can be achieved when using anti-adherent or anti-friction
excipients (e.g., magnesium stearate, leucine, lecithin), which
reduces friction drag and improves drug dispersion [75]. These
agents, also called as force-control agents, are added to the
formulation in addition to coating the device surface and cap-
sule [71,75]. Another important factor previously considered is
patient’s IFR. Every device has a range of IFR for optimal per-
formance, for example, the IFR-independent active device
produces constant FPF over a range of IFR; but at higher
IFRs, the FPF decreases [52]. This emphasizes the need for
the physician to know about the patient’s inspiratory capacity
and device performance capacity in prescribing DPI. There
has been inter-and intrapatient variability in peak inhalation
flow rate measurements making this selection difficult [76].
Nevertheless, the ultimate relationship between the physico-
chemical characteristics of the powder and the inhaler design

will decide the aerosolization, de-aggregation and dispersion
characteristics of the drug particles. Additional device design
features that can enhance the performance of DPI device are
reported to be wider mouth piece [55], aperture orientation
in capsule [71,77], decrease in air inlet size [76,78], and audible
and/or visual aid that would help patient understand that
the inhaler has been operated correctly or not [79].

6.2 Formulation considerations
Drug formulation for DPI is aimed at making particles that
are in the respirable size range, which is aided through particle
engineering techniques and nanotechnology [15,26,69,80-82].
A DPI formulation contains micronized drug in a pure form
or drug with excipients or blended with coarse carrier par-
ticles. The choice of excipients and carrier particles greatly
influences drug detachment and deposition characteristics.
Several micronization processes render the powder cohesive
with high energy, while the inclusion of the carrier particles
decreases the cohesiveness of the drug and improves aerosoliz-
ing. The only approved non-respirable carrier in the USA
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Figure 6. Images of various parts for two unit-dose DPI devices: Left column -- HandiHaler�, right column -- Aerolizer�.

(A & E) -- device external view; (B & F) -- capsule chamber and grid; (C & G) --mouth piece; (D & H) -- capsule-piercing pins within

the capsule chamber.
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is inhalation grade a-lactose monohydrate. Alternative
non-respirable carriers include mannitol, glucose, erythritol,
xylitol, sorbitol, raffinose, sucrose and maltitol [83,84]. Any
excipient that is added to a DPI formulation must overcome
clearance by pulmonary enzymes; in other words, compounds
that closely resemble endogenous substance to lungs when
used as excipient can better evade lung clearance, for example,
phospholipids [85]. Excipients are not always required in a DPI
formulation. The first carrier-free DPI approved by FDA was
Exubera�, which contains engineered particles with molecu-
larly mixed excipients. A successful product that is currently
marketed as TOBI� Podhaler� has engineered particles
through a technology called Pulmosphere�. This DPI is a
significant advancement in treating pulmonary infection sec-
ondary to CF. Powder formulation of the drug (tobramycin)
is of greater convenience, easy to use and does not require
refrigeration to store compared to the liquid formulation
(nebulizer) [86]. It also reduced the administration time by
one-third compared to liquid formulation [87]. Particle engi-
neering techniques are used to improve simultaneous admin-
istration of two drugs in single formulation by coating the
drug with a solution containing other drug [35] or co-spray
drying a solution where both drugs are dissolved in same
solution [67].

Formulation improvements through nanotechnology have
tremendous potential in advanced pulmonary drug delivery.
Hence, studies have been conducted to evaluate the usefulness
of polymeric nanoparticles [88-91] and lipid nanopar-
ticles [68,92,93] in delivering drug to the lungs in addition to
imparting sustained-release functionality. Some types of
nanoparticles employed in drug delivery are nanoaggregates,
nanocomposites [94], magnetic nanoparticles [95] and efferves-
cent nanoparticles [96].

A recent successful formulation approach to improve DPI
performance is the use of excipient enhanced growth, where
the API is formulated with a hygroscopic excipient like
sodium chloride or citric acid [97]. The submicron aerosol
particles grow in size due to the humid environment of the
respiratory tract and ensure deposition in the lungs [97-99].

7. Metering system

In a capsule-based unit-dose DPI device, a single dose of
powder formulation is prefilled in a capsule, which is then
prepackaged in individually sealed aluminum foil by the man-
ufacturer. The capsule-based unit-dose DPI device is not pre-
loaded with the capsule by the manufacturer. The patient
breaks the presealed aluminum foil package, removes the pre-
filled capsule, loads the device and presses the button that
pierces or cuts the capsule with pins or blade to release the
formulation upon inhalation [55,100]. The capsule opening
(piercing/cutting) offers the initial de-agglomeration and tur-
bulence within the capsule. The capsule-opening mechanism
is important, since it has to be consistent to release the powder
completely and uniformly [55]. The mechanical process of

piercing the capsule is done with sets of two or four pins. Ini-
tially, the capsule resists puncture by the pin and undergoes
deformation. On further force from the pins, capsule punc-
ture occurs after which the force reduces and the pin progres-
sively proceeds into the capsule. Capsule puncture tends to be
easier at lower humidity (11%) than higher [100]. Emptying of
the powder depends on the number and diameter of holes
made in the capsule [64].

In addition to capsule-based unit-dose DPI devices, there
are multi-unit dose and multiple-dose DPI devices. Multi-
unit-dose DPI devices, which are preloaded by the manufac-
turer with an aluminum foil blister (i.e., where the powder
formulation is prepacked in sealed aluminum foil units on a
disk or on an aluminum foil blister strip), and multidose
DPI devices are powder bed reservoir DPIs. Figure 5 shows
images of DPI product in market with the three types of devi-
ces. Capsule-based unit-dose DPI devices and multi-unit-dose
DPIs are prepacked in aluminum-foil-sealed unit doses,
which offer better protection from the environment compared
to reservoir type where the powder bed is exposed to the
environmental and patient’s breath humidity with each
administered dose that may contribute to drug degradation.
Due to this significant limitation, desiccant must be present
inside the powder bed reservoir DPI device (in contrast to
the many capsule-based unit-dose and multi-unit dose DPI
products).

8. Conclusions

This paper discussed the fundamental aspects of DPIs and
focused on their application to treat COPD, lung inflamma-
tory diseases and pulmonary infections. An outlook on differ-
ent aspects of device design and drug formulation that can
influence the performance of the inhaler was also presented.
The ultimate performance of a DPI pharmaceutical product
is determined by the interaction of formulation with the
device design, physicochemical characteristics of the drug,
and the patient’s ability to correctly use the device. From
the considerations discussed, an ideal DPI would have
complete de-aggregation and dispersion, deep lung deposition
with increased FPF (£ 5 µm) and minimum deposition else-
where, maximum fraction of drug emitted from the device,
decreased device retention, uniform dose delivery, and ease
of use. It is also anticipated to be independent of patient’s
IFR, easy to learn and use, portable and low-priced.

9. Expert opinion

Comparison of two dry powder inhalation products is com-
plex, since there are multifactorial differences that confound
any meaningful comparison, which include device variables,
powder formulation variables and device/formulation combi-
nation variables. For this comparison to be reasonable, the
formulation used must be consistent and the device properties
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must be as similar as possible. The device performance and
reproducibility must be considered during this comparison.
There is a growing line of product options available for

patients in choosing inhalers for treatment of respiratory
diseases. Most inhalers have similar steps in use, for example,
placing the device at the same place in mouth, breathing from
the device and not breathing into the device, a breath-hold
step for a few seconds after inhalation to enhance deposition
by sedimentation due to gravity, and cleaning the device
mouthport. However, the subtle difference in the use of
different devices can confuse patients. Successful use of the
DPI device is vital to effective pulmonary delivery and treat-
ment. There is no DPI device commercially available that is
independent of operator (patient) error. A particular problem
with passive DPIs, which are currently available, is dose vari-
ation confounded by a patient’s inspiratory rate. To better
control this problem, more active DPIs should be created in
a cost-effective way and implemented into pharmaceutical
products for local treatment of lung disease such that aerosol
generation will not depend on patient effort.
Nanotechnology is a unique and exciting platform for drug

delivery. Pulmonary drug delivery is no exception to this nov-
elty. The different types of nanoparticles available offer plenty
of opportunity for formulation. Increased drug-loading capac-
ity, increased surface area, decreased particle size, enhanced
targeting by surface moieties and enhanced mucus penetration

are noteworthy features of nanoparticles to be considered in
pulmonary delivery. Recent research has demonstrated the
usefulness of nanoparticles combined with particle engineer-
ing design technologies in the application of pulmonary
drug delivery. Combining nanotechnology with optimized
DPI formulation and enhancing device design present a
particularly promising future for DPI development. This is
particularly timely at a time of need with an ever-growing
patient population with pulmonary disease and to reduce
the complicated treatment burden for these patients.
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