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Disease recurrence is the single most common cause of death after allogeneic or autologous 
hematopoietic stem cell transplantation (HSCT). Disease status and chemosensitivity at the time 
of transplantation, as well as the development of graft-versus-host disease (GVHD), are factors 
known to influence the risk of relapse post-HSCT. Both acute and chronic GVHD have been 
associated with decreased relapse rates; however, owing to toxicity, overall survival is not 
consistently improved in these patients. Furthermore, there is a transient period of 
immunodeficiency after HSCT, which may permit residual malignant cells to proliferate early in 
the post-transplant course, before the donor immune system can establish a graft-versus-tumor 
response. Patients who fail an initial HSCT have an extremely poor outcome; therefore, maneuvers 
to prevent, identify and treat recurrent disease as early as possible in these situations are 
necessary. Strategies to distinguish graft-versus-tumor from GVHD, to enhance both general 
and disease-specific immune reconstitution after transplantation, and to increase donor-
mediated anti-host immune reactions are being investigated in clinical trials. Single agent 
nontoxic post-HSCT chemotherapy, cellular therapies and second allogeneic HSCT using reduced 
intensity regimens are among the modalities under investigation.
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Identification of patients at high risk of relapse
The underlying disease, disease status at transplantation and 
cytogenetic alterations in malignant cells are predictive of dis-
ease recurrence after transplantation. More recent studies have 
demonstrated that identification of minimal residual disease 
during leukemia therapy and at the time of transplantation 
identifies patients with greatest risk of relapse. Relapse rates after 
allogeneic hematopoietic stem cell transplantation (HSCT) 
vary by disease type, disease status at transplantation, and on 
the presence of graft-versus-host disease (GVHD) after HSCT. 
For patients with acute leukemia, relapse rates range from 25 
to 90%; for myelodysplastic syndromes the rates are between 
20 and 90%; and for juvenile myelomonocytic leukemia the 
rates approximate 60% [1–4]. Many trials have established the 
utility of minimal residual disease (MRD) measurements at 
various time points throughout leukemia therapy in predicting 
which patients will need HSCT as consolidation therapy [5–7]. 
Similarly, MRD at the time of transplant is also predictive of 
outcome after HSCT [8]. These studies suggest that monitoring 
of MRD post-transplantation will allow physicians to identify 
patients who have persistent disease who may benefit from early 
maneuvers to enhance graft-versus-leukemia effect to abort 
progression to hematologic relapse. MRD has been shown to be 
predictive of outcome in acute lymphoblastic leukemia (ALL), 
acute myeloid leukemia (AML) and chronic myeloid leukemia 
(CML) [9]. Other investigators have demonstrated that declines 
in post-transplant donor chimerism studies identify patients 
at high risk of disease recurrence, suggesting that chimerism 
studies may be a useful surrogate marker for centers without 
access to MRD technology or for patients for whom MRD 
markers cannot be established [10–12]. Improved methods of 
identification of patients at high risk for disease recurrence 
after HSCT will allow transplant physicians to employ adjuvant 
post-transplant antitumor therapies (Box 1).

Minimal disease determination
The role, methodologies and optimal tissue source for MRD 
determination before and after allogeneic HSCT are yet to be 
fully determined [13]. Peripheral blood and bone marrow have 
been used in patients to identify persistently low levels of disease, 
with approximately 75% of samples yielding concordant results. 
Peripheral blood in some cases may be less sensitive than marrow 
samples in detecting low levels of disease; however, the easy access 

of peripheral blood makes this tissue more readily available for 
ongoing monitoring [14]. Detection of elevated levels of MRD 
below the detection of microscopy predicts patients with a high 
risk of relapse. Most studies demonstrate that ALL patients with 
marrow MRD levels above 1% have an increased risk of relapse 
rate. MRD assays using markers such as WT1 in AML have also 
been successful in identifying relapse after allogeneic HSCT. 
MRD allows early detection of disease recurrence, which may 
allow early interventions such as rapid withdrawal of immuno-
suppression or the administration of cellular therapies to treat 
disease recurrence before it is overt. Unfortunately, not all children 
are able to have effective MRD markers determined [15,16].

Withdrawal of immunosuppression
Reduction of immunosuppression is typically the initial interven-
tion performed once disease recurrence is identified after trans-
plantation. Remission rates approaching 84% were observed in 
patients with chronic phase CML, but only 10% for AML, and 
0% for ALL and advanced phase CML [17]. This intervention 
can be performed in all patients with nonlymphoid malignan-
cies, irrespective of hematopoietic stem cell source. Alternatively, 
development of less intense immunosuppressive agents and other 
agents that cause less tissue damage and inflammation may reduce 
the risks of GVHD post-transplantation, making reduction in 
immunosuppression less dangerous.

Donor leukocyte infusions
Building on observations that patients who developed acute 
or chronic GVHD had lower relapse rates, donor leukocyte 
infusions (DLIs) have been proven to induce remissions post-
transplantation in patients with relapsed hematologic malignan-
cies. These observations have been most consistently observed 
in patients with CML, and to a lesser extent in AML, mul-
tiple myeloma and myelodysplasia [18–20]. Responses have been 
observed anecdotally in patients with lymphoid malignancies 
such as ALL, chronic lymphocytic leukemia, non-Hodgkin lym-
phoma and Hodgkin lymphoma. However, some patients experi-
ence disease progression while others develop pancytopenia and/
or GVHD. DLIs are not currently obtainable from cord blood 
grafts and are therefore limited to recipients of peripheral blood 
or bone marrow grafts.

Typically obtained by leukapheresis of unstimulated periph-
eral blood or by simple phlebotomy, unmanipulated DLI 
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product will contain other cell types in addition to CD3+ cells, 
such as dendritic cells, B cells, monocytic cells and natural killer 
(NK) cells, providing a spectrum of alloreactive and other acces-
sory cells that might play a role in graft-versus-tumor (GVT) 
effect [21]. By contrast, granulo cyte colony-stimulating factor 
(G-CSF)-stimulated peripheral blood cells for DLI have also 
been used and the efficacy and toxicity of unstimulated versus 
stimulated DLI still remains to be determined [22]. An optimal 
CD3 cell dose for use in DLI is not established and DLI cell 
doses are reported either in mononuclear cell dose/kg or in 
CD3+ dose/kg. However, some studies have demonstrated less 
risk of development of GVHD if a dose-escalating strategy is 
used for DLI [23]. By contrast, Fozza et al. demonstrated that 
in patients with CML, the incidence of GVHD was not signifi-
cantly different in patients receiving less then 1 × 107 CD3+/kg 
compared with the patients who received doses greater then 1 
× 107 CD3+/kg [23]. DLI dose can also be influenced by disease 
burden at the time of administration, such that patients with 
molecular relapse of CML might require a lower dose than 
patients with hematologic relapse.

Timing of DLI and the time it takes to observe the effects 
from the DLI are important factors influencing the effective-
ness of this strategy. Patients with relapses occurring more than 
6 months post-transplantation have higher chances of respond-
ing to DLI [24]. Disease response following DLI can be seen 
between 40 days and up to 1 year following DLI. In more 
indolent diseases, sequential DLIs given over a longer period 
of time may lead to remission. However, in more aggressive 
diseases, debulking chemotherapy might be necessary to reduce 
the initial large disease burden as well as allowing time for DLI 
to exert its effects. Choi et al. demonstrated 31% survival at 
2 years in patients with relapsed AML post-HSCT when treated 
with cytarabine, idarubicin and etoposide followed by G-CSF-
primed DLI. In further support of the aforementioned data, 
Choi et al. found 55% overall survival at 1 year in patients who 
were treated for relapse, which occurred greater than 6 months 
post-transplantation, as opposed to 0% survival at 1 year in 
patients treated for relapse that occurred within 6 months fol-
lowing HSCT [25]. Another predictor of DLI success is the 
tumor burden at the time DLI is administered. Patients with 
evidence of molecular relapse at the time of DLI have better 
responses even in malignancies not typically viewed as respon-
sive to DLI such as ALL, which might support careful screen-
ing of patients for detection of molecular relapse [24]. There 
are few studies comparing survival rates in patients treated 
with or without DLI for relapses following HSCT. In a large 
retrospective study, Schmid et al. demonstrated improved sur-
vival rates in patients with AML who received DLI post-HSCT 
relapse compared with patients who did not receive DLI (21 vs 
9%; p < 0.001) [26]. In this study, lower tumor burden, remis-
sion with favorable karyotype and relapse occurring more then 
5 months following HSCT were identified as favorable predic-
tors for long-term survival. Choi et al. studied ten ALL patients 
with relapse following HSCT who were treated with debulk-
ing chemotherapy followed by G-CSF-primed DLI, showing 

high rates of complete remission (seven patients), which were 
not durable however [27]. In a combination retrospective and 
prospective ana lysis of ALL-relapsed post-HSCT patients, 
Collins et al. reported no difference in survival whether patients 
received pre-DLI chemotherapy or not [28]. 

The major complications with DLI are the development of 
GVHD and cytopenias; marrow aplasia is quite rare. GVHD 
develops in up to 40–60% of patients who receive DLI. The 
development of GVHD does not always correlate with GVT 
activity [29], leading some investigators to use immunosuppres-
sion around DLI administration [30,31]. Pancytopenia following 
DLI occurs in up to 50% of cases. A total of 62% of patients 
demonstrated measurable clinical response. 

There is emerging evidence of DLI product manipulation with 
regard to CD4+CD25+ regulatory T cells and that the administra-
tion of low-dose IL-2 to patients with DLIs may offer some protec-
tive effects [32,33]. In order to make DLI more effective by changing 
the host environment, Miller et al. created a lymphopenic envi-
ronment prior to DLI with fludarabine and cyclophosphamide 
to allow for in vivo lymphocyte expansion.  A total of 15 patients 
with acute leukemia relapses post-HSCT received intervention and 
were compared with the historic controls, however, they developed 
significantly more GVHD [34].

Donor leukocyte infusions may convert mixed donor–host chi-
merism to full donor chimerism as a surrogate measure to prevent 
relapse. Orti et al. reported a study of 28 patients who received 
CD8-depleted DLI with a CD4 dose of 4 × 106 at 6 months or 
greater if they had mixed peripheral chimerism or persistent 
hematologic malignancy [35]. In eight out of 16 patients treated for 
mixed chimerism, stable full chimerism was established. Meyer 
et al. reported 20 patients who received DLI following a reduced 
intensity conditioning regimen with in vivo T-cell depletion 
with alemtuzumab, followed by infusion of dose escalated CD8+ 
depleted DLI post-HSCT [36]. A total of 13 patients received DLI 
and 12 of them converted to full donor chimerism, whereas only 
one out of seven patients who did not receive DLI converted to 
full donor chimera. Overall, DLI is an effective form of immuno-
therapy in patients with CML who relapse following HSCT, with 
remission rates of approximately 80%. The results in patients 

Box 1. Post-transplant interventions for  
recurrent disease.

Non-alloreactive

• Salvage chemotherapy

• Second autologous HSCT
Alloreactive

• Cytotoxic T lymphocytes

• Natural killer cells

• Dendritic cells
Allogeneic HSCT

• Withdrawal of immunosuppression

• Donor leukocyte infusions

• Reduced intensity regimen

HSCT: Hematopoietic stem cell transplantation.

Clinical options after failure of allogeneic HSCT in patients with hematologic malignancies
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with acute leukemias and myelodysplasia are disappointing with 
remission rates in 15–25% of patients and often the responses 
are not durable. 

Second allogeneic transplantation
Patients who have failed an initial HSCT have chemorefractory 
disease, making additional chemoradiotherapy unlikely to be 
curative. Allogeneic HSCT offers a potentially therapeutic GVT 
effect; the GVT may vary according to donor type, graft source 
and post-HSCT immunosuppression. Second allogeneic HSCT is 
typically performed after withdrawal of immunosuppression and 
administration of DLI; chemotherapy is typically administered 
to patients with rapidly progressive leukemias such as ALL. The 
efficacy of second allogeneic HSCT depends on several factors, 
such as underlying malignancy, patient age and performance 
status, type of conditioning regimen employed, and time inter-
val between first and second HSCT. Historically, second trans-
plantation has had poor outcomes, complicated by high relapse 
rates due to chemorefractory malignancies and excessive rates of 
regimen-related toxicity. In a large Center for International Blood 
and Marrow Transplant Research (CIBMTR) retrospective study 
of patients with hematologic malignancies undergoing second 
allogeneic HSCT, transplant-related mortality was 30% and the 
relapse rate was 42%, yielding an overall survival rate of 28% 
at 5 years post-HSCT [37]. Smaller series have confirmed these 
results, with the degree of tumor burden at HSCT being identified 
as prognostic. Similar outcomes have been reported for patients 
undergoing allo-HSCT after an initial autologous HSCT [38–42].

With the advent of reduced intensity and non-myeloablative 
conditioning regimens, second transplantation has been increas-
ingly offered to older patients and those with comorbid conditions, 
including those who failed an initial allogeneic or autologous HSCT 
[43,44]. Fludarabine, a potent immunosuppressive chemotherapeutic 
agent, has become incorporated into many reduced intensity regi-
mens because it has a favorable organ toxicity profile. These regi-
mens typically rely more heavily on a GVT effect than the upfront 
heavy cytoreductive chemoradiotherapy characteristic of ablative 
regimens. Recent smaller studies have suggested that treosulfan 
may be a feasible alternative to busulfan in conditioning regimens, 
suggesting that treosulfan-containing regimens have lower pul-
monary and liver toxicity than busulfan-containing regimens in 
patients with hematologic malignancies such as ALL, AML or MDS 
[45–46]. Further studies with treosulfan are needed to define its role; 
treosulfan is still under investigation in the USA. 

In order to maximize the GVT effect, graft manipulation to 
alter the cellular content of the hematopoietic grafts has been stud-
ied in an effort to increase the content of immunologically active 
cells, which may increase GVT effect, or to remove other popula-
tions such as CD3+ cells, which are associated with GVHD [47–49]. 
Investigators have used immunomagnetic columns with magnetic 
beads attached to antibodies in an attempt to separate cell popula-
tions in the hemato poietic graft by enriching the graft for certain 
cell populations such as NK cells or DCs. In clinical trials, CD3-

-depleted grafts allow haploidentical HSCT to be performed with 
acceptable GVHD risk [50–53]. This strategy allows T cells to be 

partially depleted from the donor graft, while allowing the graft to 
contain immunologically active cells such as NK cells, monocytes 
and DCs. Combined CD3+–CD19+ depletion allows the hemato-
poietic graft to have a balanced reduction in both T and B lympho-
cyte content, partly in an attempt to reduce the incidence of post-
transplant lymphoproliferative disorder. Recent studies in adults and 
children suggest that this latter graft manipulation strategy results in 
excellent outcomes after haploidentical HSCT, with overall survival 
rates approaching 50%. While relapse rates are lower than with 
traditional regimens and unmanipulated grafts, disease recurrence 
remains the most common reason for transplant failure.

Newer methodologies of graft manipulation have focused on 
enriching grafts for gd T lymphocytes, a lymphocyte population 
thought to eradicate malignant cells with a lower risk of GVHD 
[54–56]. Other investigators have employed a strategy of depleting 
hematopoietic grafts of CD4+ and CD8+ cells as a surrogate to 
enrich grafts for gd T lymphocytes; however, little clinical data 
is available on this strategy. Currently in Europe, an antibody 
against ab T cells has been developed so that haploidentical grafts 
can be enriched for gd T lymphocytes. No such antibody is yet 
available for clinical use in the USA. 

Second transplants using unrelated donor grafts and cord blood 
units have been successful. However, coordinating donor and 
recipient schedules is more difficult with an unrelated donor than 
for related donors or cord blood units. Cord blood units have 
limited volumes and cell content, and the majority of centers do 
not have the ability to manipulate the graft content of these units. 

Novel strategies
Cytotoxic T lymphocytes
In transplants where recipient and donor are matched at MHC, 
minor histocompatibility antigens (mHA) can be recognized by 
donor T cells. By analyzing immunologic reactions occurring 
with DLI administration facilitating GVT effect in patients who 
responded to DLI, it was determined that both autosomal and H-Y 
mHA play an important role. mHA are generally widely expressed 
in all tissue types but some are limited to cells of hematopoietic 
origin, including leukemic stem cells [57]. By studying patients with 
responses following DLI, it has been demonstrated that the T-cell 
response associated with GVT is polyclonal and is directed against 
several antigens. Studies looking at donor host autosomal mHA dis-
parities that demonstrated GVT activity have yielded inconsistent 
results. By contrast, retrospective ana lyses examining male recipient 
female donor pairs showed lower relapse rates suggesting that T-cell 
responses to H-Y antigens are potent in generating GVT activity 
[58,59]. Warren et al. reported data in seven patients with advanced 
MDS or acute leukemia beyond first remission who were treated 
with CD8+ mHA CTL clones upon post-transplant relapse (median 
time 7 months post-HSCT) [60]. Patients underwent immunosup-
pression withdrawal followed by administration of cytoreductive 
chemotherapy followed by three cytotoxic T lymphocyte infusions 
on day 0, 4 and 11 administered at escalating doses (3.3 × 107, 3.3 × 
108 and 3.3 × 109 ). If patients did not develop GVHD they were eli-
gible for an additional three infusions performed at weekly intervals 
followed by a 2-week course of recombinant IL-2. Three patients 
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developed grade 3 or 4 pulmonary toxicity, which was CTL dose 
dependent. Three patients developed GVHD but the causality 
role of transferred CTL could not be established. Five out of seven 
patients developed complete morphologic remission and three of 
the five patients had persistent disease following chemotherapy 
administration. However, all five patients subsequently relapsed 
and of note is that transferred CTLs could not be detected following 
21 days post administration. Norde et al. examined seven patients 
with myeloid malignancies who received DLI pre-emptively or ther-
apeutically, with respect to development of LRH-1-specific CD8+ 
T cells [61]. Some authors have previously demonstrated the presence 
of LRH-1 on the myeloid leukemic progenitor cells. Functional 
ana lysis of LRH-1 CTLs from two patients demonstrated effective 
targeting of LRH-1-positive leukemic CD34+ stem cells from both 
CML and AML patients [61].

Another strategy of generating CTLs against antigens presented 
on leukemic cells has been attempted by genetically modifying 
T cells to introduce antigen receptors capable of recognizing leu-
kemic cells. Cooper et al. generated T lymphocytes engineered to 
express chimeric antigen receptors (CARs) specific for the CD19 
molecule that may be able to prevent or treat leukemia relapse in 
B-ALL patients as these cells almost invariably express CD19 [62]. 
Furthermore, it was recently reported by Micklethwaite et al. that it 
is feasible to generate CTL lines from peripheral blood or cord blood 
units that recognize Epstein–Barr virus (EBV), cytomegalovirus 
and adenovirus and also provide antileukemic activity by trans-
genic expression of a CAR targeting CD19 expressed on B-ALL 
[63]. This combination CTL can provide antiviral and antileukemic 
activity in patients transplanted for high risk B-ALL. Stimulation 
of CTL-native T-cell receptor by viral antigen would increase their 
antileukemic activity.

B cells and antibodies have also been shown to play a role in tumor 
immunity after HSCT. Wu et al. identified antibodies reactive with 
CML cells that were identified from patients who responded to DLI 
treatment of relapse following HSCT [64]. Target proteins in this 
cohort of patients were also identified and generation of antibodies to 
these targets coincided with patients attaining remission. Antibody 
responses have also been demonstrated in patients with myeloma. As 
cord blood grafts are being increasingly used in HSCT, methodol-
ogy to consistently generate antiviral and antitumor CTLs or other 
immunologically active cell lines will be important.

In an attempt to overcome anergy and to enhance antitumor 
activity of infused T cells, investigators have infused ex vivo acti-
vated CD3+ cells for patients with recurrent disease after HSCT 
[65]. Donor cells, activated through costimulation with anti-CD3 
and anti-CD28 coated beads, were administered to 18 patients in a 
Phase I trial, with dosing ranging from 1 × 106 to 1 × 108 CD3+/kg. 
Eight patients achieved remission, and developed acute GVHD and 
four developed chronic GVHD. Four survived at a median follow-
up of 23 months, demonstrating that infusion of ex vivo activated 
T lymphocytes can be performed with long-term antitumor effects 
and without excessive GVHD. 

Epstein–Barr virus-specific cytotoxic T lymphocytes have long-
term use in treating and preventing EBV-mediated post-transplant 
lympho proliferative disorder in patients undergoing hematopoietic 

and solid organ transplantation. Studies have demonstrated rapid 
efficacy in treating detectable and radiographically measurable dis-
ease, by effective prevention of EBV reactivation, and long-term 
persistence of donor-derived EBV-specific T cells in recipients of 
allogeneic HSCT [66–68]. This experience serves as a model for 
generation of T cells generated to recognize antigens expressed 
on a malignancy for post-transplant prevention and treatment of 
disease recurrence.

NK cells
During the first month after allogeneic HSCT, the predominant 
lymphocyte population detected in the peripheral blood is NK cells, 
comprising approximately 20% of the lymphocytes in the periph-
eral blood. NK cells express the immunophenotype CD3+CD56+ 
and kill target cells in an MHC-unrestricted fashion, without prior 
stimulation or antigen recognition.

In one large retrospective study of 1770 patients undergoing 
T-cell-repleted HSCT from HLA-matched and mismatched unre-
lated donors for hematologic malignancies, investigators found that 
recipient homozygosity for HLA class B or class C killer immuno-
globulin-like receptor (KIR) epitopes identified a group who were 
at lower risk of disease recurrence when receiving grafts from mis-
matched donors only. This finding was not observed in recipients 
of matched unrelated donor grafts. These findings suggest that NK 
cell alloreactivity, mediated via HLA class I expression, may play an 
antitumor role after allogeneic HSCT [69]. 

Interactions occur between KIRs expressed on the NK cell and the 
HLA class I molecule on the surface of cells. KIRs can be inhibitory 
or activating, however, the majority are inhibitory and prohibit self 
recognition [70]. Since the 1990s, several studies of haplo identical 
HSCTs have found that NK cells could enhance hemato poietic 
engraftment and decrease disease recurrence for patients with 
hematologic malignancies receiving T-cell-depleted grafts from mis-
matched family member donors through a graft-versus-leukemia 
effect. Early studies of haploidentical transplantation have demon-
strated antileukemia NK cell activity [71–74]. In addition, NK cell 
infusion after allogeneic and autologous HSCT demonstrated that 
these infusions could be safely performed [72,75–77].

The effect of KIR-ligand mismatching on transplant outcomes in 
patients receiving unrelated donor or matched sibling donor trans-
plantation is less clear. Some authors have reported an improve-
ment in disease-free survival attributable to lower relapse rates, 
while others have demonstrated no difference between recipients 
of KIR-mismatched grafts and those with matched grafts [78–81]. 
In these latter studies, the grafts were T-cell replete, which may 
have overshadowed any NK cell effect [82]. Other authors have 
demonstrated that the NK cell effect is greater in T-cell-depleted 
transplantation. In the unrelated donor setting, it is important to 
point out that a KIR-ligand mismatch requires a mismatch in class 
I HLA antigens, which is known to increase GVHD and decrease 
overall survival. It is unclear whether a KIR-ligand mismatch can 
overcome this adverse effect.

Recent studies in adults with refractory malignancies have 
shown that in vivo-expanded mismatched-related donor NK 
cells demonstrated NK cell expansion only in those patients who 
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received an immunoablative lymphocyte-depleting regimen. More 
recent studies of haploidentical NK cell infusions in pediatric 
patients with AML demonstrate that with postinfusion IL-2 
administration, NK cells can persist for a median of 10 days; none 
of the ten patients developed disease recurrence at a median time 
of 964 days [83].

B-cell lymphoblasts appear to be resistant to the lytic effects of 
NK cells. In order to overcome this resistance, investigators are gen-
erating human NK cells with enhanced cytotoxicity by coculturing 
NK cells ex vivo with irradiated leukemia cell line K562 modified to 
express a membrane-bound form of IL-15. Clinical trials are under-
way to investigate the safety and efficacy of this approach [84]. Other 
investigators have studied ways to use gene therapy to enhance NK 
cell activity against targets resistant to them, such as B lymphoblasts.

Genes encoding KIR and their HLA class I ligands are inherited 
independently; therefore, individuals may express an inhibitory 
KIR gene but not its corresponding ligand. In one study in children 
undergoing autologous transplantation, the authors found that 
disease recurrence rates were lowest for those with two mismatched 
pairs (0%) followed by one mismatched pair (50%), with the high-
est rates (100%) observed for those with no KIR–HLA ligand 
mismatch [85]. This report suggests that KIR-ligand mismatch in 
autograft recipients may be used as a prognostic factor and that 
NK cells may be effective in post-transplant immunomodulation 
to decrease relapse rates. In vitro studies suggest that NK cell cyto-
toxicity is observed in cell lines representative of Ewing sarcoma, 
rhabdomyosarcoma, neuroblastoma and osteosarcoma [86].

Dendritic cells
Dendritic cells are antigen-presenting cells originating from 
hematopoietic cells, differentiating along two different pathways 
into immunologically active cells: plasmacytoid DC or myeloid 
DC. Plasmacytoid DCs secrete type 1 interferon, to activate NK 
and NKT cells, thus initiating immune responses to viruses. 
Myeloid DCs comprise Langerhans cells, which are located in 
skin and mucosal surfaces and interface with the external envi-
ronment. There are currently no standard clinical applications of 
DCs although clinical trials are underway. DCs may be limited 
in their effectiveness in T-cell lymphopenic environments since 
they exert their influence by activating T-cell populations [87–92].

Donor vaccination
Because of the risk of GVHD associated with DLI, investigators 
have considered vaccination of donors prior to stem cell collec-
tion in an effort to enhance specific antitumor immunity in the 
donor immune system. In order to successfully vaccinate the donor, 
the tumor antigen must be known, a current limitation for many 
malignancies. Alternatively, the patient-specific tumor could be 
used to develop a lysate to be used in the vaccine, which could be 
a labor intensive, expensive process. In either event, following vac-
cination, the graft would be harvested and presumably the immu-
nity transferred to the recipient following transplantation. In one 
study of five donor-recipient sibling pairs, in which the recipients 
were undergoing HSCT for myeloma, donors were immunized 
with a recipient-derived myeloma idiotype protein conjugated to 

keyhole limpet hemocyanin, an immunogenic carrier. Following 
transplantation, recipients continued to receive booster vaccines 
with the idiotype protein. Of the three pairs evaluable, all three 
converted to complete remission post-HSCT and no adverse events 
associated with the immunizations were observed. Interestingly, in 
all three recipients, the T-cell responses to the idiotype protein were 
not detected pre-HSCT, but were detected for up to 18 months 
after HSCT. This study suggests that vaccination of donors may 
be potentially useful in solid tumors and hematologic malignancies 
when the tumor antigen is well defined [93]. However, potential 
risks to the donor need to be carefully considered.

Novel pharmacotherapeutic options (tyrosine kinase 
inhibitor, demethylating agents, rituximab)
Following allogeneic HSCT, specific chemotherapeutic agents may 
be employed to slow disease progression once disease recurrence is 
confirmed, to allow time for donor identification for second trans-
plant procedure, pre-transplant evaluation, and for recovery from 
the first transplant procedure. Patients whose malignancies contain 
the Philadelphia chromosome may receive tyrosine kinase inhibitors 
[94,95]. Imatinib and dasatinib have been well tolerated prophylacti-
cally during leukemia induction and post-transplant, with cytope-
nias being the most commonly observed toxicity. Longer follow-up 
is necessary to ascertain the effects of post-transplant tyrosine kinase 
inhibitor administration on overall survival. In adults with MDS/
AML, post-transplant use of demethylating agents have been used 
successfully [96]. In 45 patients treated, the most common toxicities 
were hematologic, particularly thrombocytopenia. 1-year event-free 
survival was 58%. In addition, the anti-CD20 antibody rituximab 
has been well-tolerated in patients with non-Hodgkin’s lymphoma 
who tumors express CD20 antigen [97]. However, single-agent 
administration is unlikely to reinduce remission in patients with 
aggressive malignancies. 

Antibody therapy 
Recently, a novel group of agents have been studied in an effort to 
enhance immunologic activity against the tumor, by developing 
bispecific T-cell engaging antibodies, termed BiTE [98]. These T 
cells are bispecific for a target antigen on the surface of malig-
nant cells and for CD3, expressed on the surface of T cells. This 
bispecificity enables them to connect a T cell to a cancer cell inde-
pendent of any T-cell receptor specificity. Two novel agents are 
currently being studied – one in non-Hodgkin’s lymphoma and 
B-cell-precursor ALL (targeting CD19) and another in carcino-
mas (targeting epithelial cell adhesion molecule). Initial results of 
a Phase II trial of blinatumomab demonstrate that T cells engaged 
by blinatumomab are able to locate and eradicate tumor cells in 
the bone marrow. Three pediatric patients with B-cell-precursor 
ALL, recurrent after allogeneic transplantation, received blina-
tumomab and attained complete remission, all achieving MRD 
levels below the detection limit in the bone marrow [99]. Adverse 
events are generally mild and consist of leukopenia, lymphopenia, 
chills, pyrexia and elevated C-reactive protein, most of which 
resolve with ongoing treatment. All are considered investigational 
in the USA.
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Expert commentary & five-year view
Over the last 40 years, transplant physicians have made significant 
strides in improving patient outcomes, largely through better sup-
portive care to prevent and to treat infections, to reduce regimen-
related toxicity, and to lower the risk of GVHD though improved 
HLA typing and donor availability. Disease recurrence remains 
a significant cause of treatment failure for transplant recipients. 
Immunotherapy for relapse following HSCT has evolved from 
quite nonspecific therapy utilizing multiple cell types such as 
what is administered with unmanipulated DLI, to highly spe-
cific genetically modified CTLs that are capable of treating both 
infections as well as providing antileukemic activity and without 
significant risk of developing GVHD, to the identification of 
novel cell immunologically active cell populations and new graft 
processing technologies, leading us closer to the ultimate goal of 
transplantation separation of GVHD from GVT.

In the future, HSCT will be increasingly utilized as advances in 
HLA typing and supportive care make transplantation safer and 
as the number of potential donors increase. Increasingly, HSCT 
will become incorporated into the treatment regimen of patients 
as MRD and other markers are used to identify patients likely 
to fail standard treatments earlier in their treatment course. As 
transplantation becomes safer, disease recurrence will increasingly 
become the primary cause of death after HSCT, making it the 
primary factor to overcome to improve overall transplant success. 

In order to reduce the rates of relapse, transplant physicians 
will be increasingly working to identify the best time to perform 
transplantation in the course of a patient’s treatment. Developing 
means to measure MRD for each patient will become standard 
and physicians will use these results to optimize the timing of 
transplantation and to counsel patients on transplant outcomes. 

Second allogeneic HSCT will continue to be an integral part of 
the salvage therapy for patients with recurrent disease after trans-
plantation. Reduced intensity regimens will be selected to contain 
agents that are effective for the individual patient by screening 
the patient’s malignant cells for resistance mechanisms. Prior to 
transplantation, patients at high risk of disease recurrence will 
have CTLs manufactured and cryopreserved for administration 
post-transplant either prophylactically or in response to MRD 
measurements. Post-transplant immunomodulatory manipulation 

through graft composition, cytokines and other cellular therapies 
will be increasingly explored as the roles of various cell populations 
in preventing or treating disease recurrence are studied. NK cells 
will be increasingly utilized post-transplantation and may regularly 
be administered to high-risk patients at specified time points after 
HSCT. As cancer-specific antigens are identified, cytotoxic T cells 
specific for a patient’s malignancy may be generated prior to HSCT 
for administration post-transplantation with a low risk of GVHD. 
This intervention will expand the field of personalized medicine. 

As cord blood grafts are likely to increase quantitatively as a 
common stem cell source, cord blood banks will begin keeping 
aliquots to generate CTLs against the patients’ malignancy at the 
time the unit is dispensed to the transplant center. 

In some settings, transplant physicians may purposefully select 
a donor, mismatched with the recipient so that there is a KIR-
ligand mismatch, allowing NK cell cytotoxic effects to eradicate 
residual leukemia cells, particularly in patients with myeloid 
malignancies and those receiving a T-cell-depleted graft from 
a mismatched family member. Transplantation using donors 
from mismatched family members will increase since nearly all 
patients have such a donor, these donors are readily available 
and highly motivated, and scheduling of stem cell collection and 
transplantation is easier for patients with refractory disease or 
unpredictable disease treatment courses. The role of NK cell 
alloreactivity will be explored in studies of T-cell-replete grafts 
from matched-related or volunteer-related donors.

As regimen-related toxicity rates decline, more patients will 
undergo second allogeneic HSCT for disease recurrence. Second 
transplantation will likely incorporate novel graft manipulation 
strategies and donor stem cell sources. Haploidentical grafts are 
readily available and easy to schedule in HSCT in the course of 
the treatment of patients with refractory malignancies. Donor-
recipient KIR incompatibility will be increasingly utilized, mak-
ing mismatched donors the preferred donors for second HSCT, 
particularly if KIR incompatibility exists. Multidimensional treat-
ment modalities, incorporating novel chemotherapeutic agents, 
identification of early disease recurrence, novel graft manipula-
tion strategies and identifying measures to optimize the post-
transplant antitumor response, will most likely be effective in 
reducing relapse rates after transplantation. 

Key issues

• Disease recurrence is the single most common cause of death after allogeneic and autologous hematopoietic stem cell 
transplantation (HSCT).

• Reduced intensity conditioning regimens are most commonly used in patients with comorbid conditions or requiring second allogeneic 
HSCT in an effort to reduce treatment-related mortality.

• Mechanisms to enhance donor T-cell alloreactivity, such as withdrawal of immunosuppression or donor leukocyte infusions, induce 
antileukemia effects in some patients, more commonly those with myeloid malignancies, but at the risk of graft-versus-host disease.

• Specific alloreactive cellular therapies such as cytotoxic T lymphocytes are investigational and hampered by the clear identification of 
antigens specific to the malignancy.

• Natural killer adoptive cellular therapy may represent a new treatment option to be studied in inducing remission in patients post-HSCT, 
most commonly in those with myeloid malignancies. 

• Dendritic cells exhibit potential antitumor effects but at the risk of causing GVHD, but are dependent on the presence of T cells for their 
influence to be exerted.

• Post-transplant immunostimulatory options are the most likely adjuvant treatments to study to decrease relapse after HSCT.

Clinical options after failure of allogeneic HSCT in patients with hematologic malignancies
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1. A 65-year-old woman who has been treated with chemotherapy for acute myeloid leukemia (AML) and is now 
being considered for hematopoietic stem cell transplantation (HSCT) presents. The patient and her husband are 
concerned regarding the possibility of relapse in this patient.
Which of the following statements regarding the risk for relapse after allogeneic HSCT is most accurate?

£ A The relapse rate for acute leukemia after HSCT is less than 25%

£ B Minimal residual disease (MRD) is predictive of outcome in chronic myeloid leukemia (CML) but not AML

£ C Peripheral blood may be less sensitive than marrow samples in detecting MRD

£ D MRD levels less than 1% predict a higher risk for relapse among patients with AML

3. You also consider a second allogeneic HSCT for this patient. Which of the following statements regarding this 
therapy is most accurate?

£ A It should be performed prior to DLI

£ B It should be avoided among older patients with comorbid conditions

£ C Fludarabine should be avoided because of its negative organ toxicity profile

£ D Removing CD3+ cells in the graft reduces the risk for GVHD

2. The patient from question #1 undergoes HSCT but then develops evidence of relapse. What should you consider 
regarding the use of donor leukocyte infusions (DLIs)?

£ A DLI is most effective for patients with AML

£ B Relapses more than 6 months post-transplantation have higher chances of responding to DLI

£ C The most significant complication of DLI is marrow aplasia

£ D Remission rates of acute leukemias approach 80% after DLI
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4. What else should you consider regarding novel strategies to treat this patient?

£ A Cytotoxic T-lymphoctes (CTLs) are the primary lymphocyte population detected in the peripheral blood in the month 
following HSCT 

£ B Killer immunoglobulin-like receptors (KIRs) on NK cells function purely as activating receptors

£ C KIR-ligand donor–recipient mismatch may increase the risk for GVHD

£ D Infusions of dendritic cells improve outcomes among patients with relapse after HSCT
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