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Health outcome measures can be divided into 
objective and subjective measures. For many 
years, the outcomes were articulated primarily in 
terms of death, disability or cure. Nowadays, the 
assessment of medical interventions and health-
care services also takes health-related quality of 
life, treatment process characteristics, side effects 
and patient satisfaction into account by means 
of patient-reported outcomes, clinical-reported 
outcomes and observer-reported outcomes. 
Subjective measures such as patient-reported 
outcomes are therefore becoming core outcome 
measures for clinical trials, interventions in cure 
organization and other types of health studies. 
Many of these studies are carried out to dem-
onstrate the efficiency or effectiveness of new 
interventions or protocols.

Objective measurement is the estimation or 
determination of extent, dimension or capacity 
in relation to some standard or unit of measure-
ment. To solve the problem of measuring in the 
absence of such a standard or unit, methodolo-
gies have been developed to measure phenomena 

that are unobservable, hence subjective. Such 
methodologies, sometimes known as scaling 
models, can establish the relative merit (value) of 
a subjective phenomenon. The values (variously 
called utilities, strengths of preferences, indices 
or weights) that scaling methods that will be 
discussed in this article generate are assumed to 
have a specific measurement property, namely 
that the differences between values possess car-
dinal qualities. This means that the differences 
between values reflect true differences and lie 
on a continuous scale (e.g., if a patient’s score 
changes from 20 to 40, this increase is the same 
as from 70 to 90).

Over the past decade, the use of discrete choice 
(DC) models has proliferated in the area of 
health evaluation, especially in health econom-
ics. The vast majority of published studies using 
this methodology in health evaluation tend to 
focus on the possibility that individuals derive 
benefit from nonhealth outcomes and process 
attributes (e.g., therapy convenience or waiting 
time) in addition to health outcomes (safety or 

Alexander MM Arons*1 
and Paul FM Krabbe2

1Department for Health Evidence, 
Radboud University Medical Center, 
PO Box 9101, 6500 HB, Nijmegen, 
The Netherlands
2Department of Epidemiology, 
University of Groningen, University 
Medical Center Groningen, 
PO Box 30.001, 9700 RB, Groningen,  
The Netherlands 
*Author for correspondence: 
s.arons@ebh.umcn.nl

Interest is rising in measuring subjective health outcomes, such as treatment outcomes that are 
not directly quantifiable (functional disability, symptoms, complaints, side effects and health-
related quality of life). Health economists in particular have applied probabilistic choice models 
in the area of health evaluation. They increasingly use discrete choice models based on random 
utility theory to derive values for healthcare goods or services. Recent attempts have been made 
to use discrete choice models as an alternative method to derive values for health states. In this 
article, various probabilistic choice models are described according to their underlying theory. 
A historical overview traces their development and applications in diverse fields. The discussion 
highlights some theoretical and technical aspects of the choice models and their similarity and 
dissimilarity. The objective of the article is to elucidate the position of each model and their 
applications for health-state valuation.

Keywords: choice models • health state • quantification • subjective measurement • utilities • values

Probabilistic choice models 
in health-state valuation 
research: background, 
theories, assumptions and 
applications
Expert Rev. Pharmacoecon. Outcomes Res. 13(1), 93–108 (2013)

Expert Review of Pharmacoeconomics & Outcomes Research

© Alexander MM Arons

10.1586/ERP.12.85

1473-7167

1744-8379

Review

For reprint orders, please contact reprints@expert-reviews.com



 Expert Rev. Pharmacoecon. Outcomes Res. 13(1), (2013)94

Review

effectiveness). Applying DC models in health has been described 
as deriving values beyond health or clinical outcomes [1]. In addi-
tion, DC models have been introduced as an alternative method to 
standard gamble (SG), time trade-off (TTO) and visual analogue 
scales (VAS) to derive health-state values [2–7]. Access to valid and 
accurate values for a wide range of health conditions is also advan-
tageous as these can be used in health outcomes research, disease 
modeling studies and economic evaluations (cost–utility analysis), 
and to monitor the health-related quality of life of  individuals in 
the general community (as well as in clinical studies).

DC models belong to the class denoted in the statistical lit-
erature as probabilistic choice (PC) models. All PC models have 
in common that they are able to establish the relative merit of a 
phenomenon. In technical terms, these models take data obtained 
at one measurement level and transform it to an aggregated higher 
level. The PC models that will be discussed in this article, which 
are used in health-state valuation, are supposed to generate an 
interval scale (cardinal data) from ordinal data. If the phenom-
enon is described according to characteristics (or attributes) with 
certain levels, extended PC models make it possible to estimate 
the relative importance assigned to these attributes and their 
associated levels, and even to estimate overall value for different 
combinations of attribute levels. Models falling into the latter 
subset of PC models are applied in conjoint analysis, a term that is 
often used interchangeably (and sometimes incorrectly) with DC 
modeling. Extended PC models have been used widely to elicit 
values in a number of other research areas, notably in marketing, 
transportation and environmental economics [8].

PC models are powerful but can be complex. The art of finding 
the appropriate model for a particular application requires research-
ers to be familiar with the subject of interest so that the relevant 
attributes and levels can be applied in the choice task. Additionally, 
researchers need to understand a model’s methodological and theo-
retical background in order to be able to arrive at valid conclusions. 
Furthermore, several different PC models exist. While they are 
all related, their theoretical assumptions, purposes and practical 
applicability differ. Another complicating factor is that the subset of 
DC models within PC models has been described in the literature 
variously as discrete choice experiments [9], conditional logit (and 
later on also probit) analysis [10], discrete choice analysis [11], conjoint 
analysis [12], discrete choice conjoint analysis [13], stated preference 
discrete choice modeling [14] and random utility choice models [15].

The aim of this paper is to present a historical, theoretical and 
methodological overview of different PC models used to quantify 
subjective health outcomes. Particular attention is devoted to the 
introduction, development and peculiarities of PC models and of 
the subset of DC models. The similarities and differences between 
the underlying models are explained. Then the discussion turns 
to some issues related to the widespread use of DC models to 
 evaluate individuals’ preferences in health-state valuation.

Historical development of modeling preferences
Thurstone’s law of comparative judgment
The long tradition of PC models started in 1927 with Louis 
Thurstone, who began his career as an electrical engineer and 

worked for many years as a psychometrician at the University 
of Chicago (IL, USA). He formulated a mathematical model, 
which he called the Law of Comparative Judgment (LCJ), that 
could be used to estimate scale values (a latent trait) based on 
binary choices between stimuli [16]. A ‘discriminal process’ medi-
ates each psychological stimulus magnitude. Thurstone proposed 
that perceived physical phenomena (e.g., brightness and weight) 
or subjective concepts (e.g., seriousness of crimes and taste) could 
be expressed as a true weight and a random component. In psy-
chology, subjective phenomena are regarded as attitudes: psycho-
logical tendencies that are expressed by evaluating a particular 
entity with some degree of favor and/or disfavor. Attitudes can 
be regarded as mental constructs of phenomena that people want 
to acquire or reject, like or dislike, or wish to protect or harm.

Thurstone built upon work by his predecessors, in particular 
Gustav Fechner (1801–1887), a German experimental psycholo-
gist. Fechner was a pioneer in experimental psychology and is 
credited to be the founder of psychophysics. He inspired many 
20th century scientists and philosophers, including Thurstone. 
Early psychophysical work built upon precise but simple experi-
ments. A typical example is: consider the following two objects 
with weights, w

1
 and w

2
; which one is heavier? Such experiments 

would demonstrate that the greater the difference in object 
weight, the greater the probability of choosing correctly (how-
ever, note [17]). This measurement approach is based on mak-
ing comparative judgments. In everyday life, people rarely make 
absolute judgments (i.e., attach a numeric value). Most choices are 
based on judgments and are inherently comparative. In psychol-
ogy, discrimination is therefore regarded as a basic operation of 
 judgment and of generating knowledge.

Thurstone postulated that each stimulus (i.e., object, item, 
state and scenario) in a set of stimuli would possess some attrib-
utes in varying but unknown degrees. For each stimulus and 
among all subjects, it is assumed that a preference will exist. 
Furthermore he postulated that for each stimulus the overall 
preference will be distributed normally around the most frequent 
(modal) response. To measure such overall preferences, each per-
son’s preference for each stimulus versus every other stimulus 
has to be obtained. The more people who select one stimulus 
of a pair over the other stimulus, the greater the preference for 
that stimulus, and thus the greater its scale weight. Therefore, 
the basic element of subjective measurement in the framework 
of comparative measurement (as opposed to monadic measure-
ment, in which stimuli are valued separately) is a simple and 
straightforward response task based on a comparison between 
two stimuli, done in such a way that it yields data that contain 
compelling information.

Thurstone’s approach is indirect; it is based on an underly-
ing theory allowing raw individual data to be transformed into 
aggregate data. Therefore, psychometricians regard it as scaling. 
In terms of modern psychometric theory, however, it is more 
aptly regarded as a measurement model [Appendix: A]. Because 
Thurstone’s model derives group scale values from imprecise indi-
vidual data, it is also regarded as a probabilistic choice model. 
Thurstone’s LCJ can only be used to model paired comparisons. 
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The model that will be discussed in the next section allows for 
modeling comparisons with more than two alternatives.

Bradley–Terry–Luce model
Another approach to comparative data is the Bradley–Terry–
Luce (BTL) model, as statistically formulated by Bradley and 
Terry in 1955 [18] and extended by Luce in 1959 [19]. It extends 
the Thurstone model by enabling a person to choose from more 
than two alternatives. The BTL model postulates that measure-
ment on a ratio level can be established if the data satisfy certain 
structural assumptions [20]. For mathematical reasons, the BTL 
model is based on the simple logistic function instead of the 
normal distribution of the Thurstone model [Appendix: B]. If 
only pairs of alternatives are judged, the BTL model is identi-
cal to Thurstone’s (except for the error terms). However, when 
more than two alternatives are judged, an important assump-
tion must be made, namely the independence of irrelevant 
alternatives (IIA). The mathematical implication is that the 
rate of substitution between two or more alternatives remains 
unchanged by adding an alternative. As discussed later, the 
IIA assumption is a key property of almost all basic logit DC 
models [21].

Conjoint measurement
Another advance in mathematical psychology was fundamen-
tal measurement representation, developed by Luce and Tukey 
in 1964 [19,22]. Fundamental measurement theory is a mathe-
matical framework based on logical (not normative) axioms. It 
concerns exclusively the qualitative conditions under which a 
particular representation (measurement and scaling) holds. One 
of the earliest representational measurement theories is conjoint 
 measurement [22].

Scientists realized that the social sciences could not live up to 
the standards of objective measurement that was being applied in 
the physical sciences. Conjoint measurement was developed to be 
able to perform fundamental measurement with subjective entities 
or concepts. It is used to measure the joint effects of two or more 
independent variables on the ordering of a dependent variable (the 
property to be quantified). As Perline, Wright and Wainer [23] 
put it: “The question is whether or not there exists a monotonic 
transformation of an ordinal measure of the dependent variable 
from which an additive representation can be constructed.” The 
axiomatization of conjoint measurement is complicated. Its full 
version includes technical axioms (e.g., consistency, transitivity 
and double cancellation), which can often plausibly be assumed 
to hold approximately [24,25]. When the axioms hold, the result 
is that the observed but transformed dependent variable and the 
concomitantly constructed independent variables are simultane-
ously (hence the term ‘conjoint’) represented on an interval scale 
with a common unit [23]. Conjoint measurement, as a member 
of the class of fundamental measurement theories, is algebraic 
(designating an expression in which only numbers, letters and 
arithmetic operations are contained or used) and therefore deter-
ministic (as opposed to most models described in this article that 
are probabilistic).

Rasch model
Although conjoint measurement is generally acknowledged as 
an important theoretical contribution, its practicality is in doubt 
because of its strict axiomatic assumptions. The Rasch [26] model 
– independently developed from conjoint measurement – can be 
seen as a practical rendition of conjoint measurement with an 
underlying stochastic structure [23]. Georg Rasch (1901–1980) 
was a Danish mathematician, statistician and psychometrician. 
He applied his model for dichotomous data to data derived from 
responses to attainment and intelligence tests [26]. These tests 
do not confront the respondents with a comparative task. The 
Rasch model is the only one in this overview that uses responses 
(e.g., agree/disagree, correct/incorrect or able/unable) collected 
separately from a set of questions (monadic measurement). For 
this reason, the Rasch model is not a choice model in a strict 
sense. However, when comparisons are made between one’s own 
health status versus a hypothetical state, it can be considered a 
choice model. The Rasch model is particularly useful in psycho-
metrics, the field concerned with the theory and technique of 
 psychological and educational measurement.

Later extensions of the Rasch model are known as item response 
theory (IRT) models. These are increasingly used in other areas, 
including the health profession [27–31]. IRT models are mathemati-
cal functions that specify the probability of a discrete outcome, 
such as a correct response to an item, in terms of both item and 
person parameters [Appendix: C]. Item parameters include the 
difficulty of an item (for health states: severity) and the discrimi-
nation of an item (for health states: the agreement among respond-
ents on the severity). Person parameters may represent the ability 
of a student or the strength of a person’s attitude, for example 
(for health states, the person parameter represents a person’s own 
health state). The items may be questions that have incorrect and 
correct responses, or they may be statements on questionnaires 
that allow the respondents to indicate their level of agreement. So 
far, IRT models have been used for the quantification of single 
domains and for the selection of relevant domains of classification 
systems; however, they have not been used to model the quality of 
health states. However, such an application seems feasible based 
on responses from patients instead of the general population [32].

It turns out that the Rasch model is very closely related to the 
BTL model with regard to measurement, while the structure of 
the items is closely related to Guttman scaling [33]. The key dif-
ference between the Rasch model and all other logit models is 
that the former has been extended with a separate parameter to 
estimate each respondent’s position on the scale [34]. By an inter-
active conditional maximum likelihood estimation approach, a 
scale estimation is obtained without involvement of the person 
parameter, which is specific to the Rasch model. Therefore, 
Rasch models have a specific measurement property, namely 
invariance, which is a critical criterion of fundamental meas-
urement. For health-state valuation, the property of invariance 
means that the outcome of choices between two (or more) health 
states should not be dependent on which group of respondents 
performed the assessments. Additionally, the resulting choices 
among health states should also be independent of the set of 
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health states that were assessed. Obviously, this demands a 
strong specification of the structure (Guttman structure, Figure 1) 
of the response data [35], a requirement that is not often satisfied. 
However, when all assumptions of the Rasch model hold, the 
model is used to construct the variable of interest. This repre-
sents a different philosophical perspective. In the Rasch model, 
the data are fitted to the model instead of vice versa. Therefore, 
it can be stated that the Rasch model allows for truly objective 
(fundamental) measurement. This is similar to Guttman scal-
ing, Coombs Unfolding [36] and measurement in the physical 
sciences. Extensions of the Rasch model (i.e., IRT models) relax 
to some extent the strong requirements posed on the response 
data, but these models do not possess fundamental measure-
ment properties. To estimate both the person and item location 
parameters, the Rasch model is formulated as a conditional logit 
model [26].

The standard Rasch model, the BTL model, and Thurstone’s 
LCJ model can only be used to derive scale values for the judged 
alternatives. The methods that will be successively discussed 
below are extended models that also facilitate estimating the con-
tribution of the characteristics of health outcomes, if identifiable 
and structured.

Conjoint analysis
A professor in marketing, Green [37], recognized that Luce and 
Tukey’s conjoint measurement article [22] provided a new system 
to quantify rank order data. This type of data could be applied 
to marketing research (e.g., to forecast market response for new 
products). His more pragmatic approach (no formal checks and 
based on regression models) is what is now called conjoint analy-
sis. Today this technique is used in many of the social and applied 
sciences. The objective of conjoint analysis is to determine the 
separate contribution of a limited number of attributes of an 
object on its overall value.

With conjoint analysis, respondents are generally shown a set 
of products, goods, services, scenarios or pictures. Each example 
is similar enough to the others that respondents will see them as 
close substitutes but dissimilar enough that they can clearly deter-
mine a preference. Each example is composed of a unique com-
bination of features. The response task may consist of individual 
ratings, rank orders or choices among alternative combinations.

In addition to different possible response modes, there are 
further differences within the conjoint analysis approach. There 
are different models (i.e., full profile, partial/incomplete profile, 
hierarchical, Bayesian, and so on) and different designs (i.e., full 
factorial, fractional factorial, resolution III, and so on). In that 
regard, conjoint analysis can be taken as an umbrella term describ-
ing various methods to derive quantitative measures for subjective 
phenomena based on a combination of stimulus configuration, 
experimental design, response modes and statistical analyses. The 
reader is referred to Louviere et al. [38] for an excellent discus-
sion of the differences between conjoint analysis described above, 
and discrete choice models, which will be discussed in the next 
section.

Discrete choice models
In Thurstone’s LCJ, the perceived level of a stimulus equals a 
systematic component plus a random error. In the LCJ choices are 
modeled as the probability that one object is rated higher than a 
second because this alternative has the higher perceived stimulus. 
When the perceived stimuli are defined in terms of utility, this 
law can be turned into a model for economic choice in which 
utility is modeled as a random variable. This implication was 
drawn by the economist Marschak in 1960, who thereby intro-
duced Thurstone’s work into economics. Marschak called this 
the random utility maximization hypothesis or random utility 
model (RUM) [39]. The RUM assumes, in line with neoclassical 
economic theory, that the decision-makers are rational in the 
sense that they make choices which maximize their perceived 
utility (subject to economic and cognitive constraints). However, 
to accommodate for the demonstrated inability of individuals to 
discriminate perfectly and of the analyst to exactly measure the 
subject of interest a random utility function is assumed [16,40].

Modern DC models came from econometrics and built upon 
the work of McFadden, who was awarded the Nobel Prize in 
economics in 2000 [10]. DC models encompass a variety of experi-
mental design techniques, data collection protocols and statistical 
procedures that can be used to predict the choices that subjects 

Figure 1. Schematic representation of the raw data and 
after sorting of the columns (health states) and the rows 
(patients) in order to arrive at the hierarchical Guttman/
Rasch data structures (the check mark indicates that this 
health state is preferred over the next health state, the 
cross mark indicates a misfit).
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will make between alternatives. These techniques can be applied 
when subjects have the ability to choose between two or more 
distinct (‘discrete’) alternatives. In the mid-1960s, McFadden 
was working with a graduate student who had obtained data on 
freeway routing decisions from the California Department of 
Transportation. His graduate student was looking for a way to 
analyze her data to study economic decision-making behavior. 
McFadden developed the first version of what he called ‘con-
ditional logit analysis’ [10] (often referred to as the multinomial 
logistic model, this term is used in other contexts to refer to a 
partially different model [Appendix: D]). He proposed an econo-
metric model in which the values of alternatives depended on 
values assigned to their attributes, such as construction cost, route 
length, and areas of parkland and open space taken up [41]. He 
developed a computer program that allowed him to estimate this 
model, based on an axiomatic theory of choice behavior  developed 
by the mathematical psychologist Luce [19].

As the foundation for his probabilistic choice model, Luce’s choice 
axiom states that the probability of choosing one stimulus over 
another from a set of many stimuli is not affected by the presence or 
absence of other stimuli in the set (IIA assumption [Appendix: E]), 
and that these stimuli have independent and identically distributed 
measurement errors [19]. The IIA axiom simplifies experimental col-
lection of choice data by allowing multinomial choice probabilities 
to be inferred from binomial choice experiments [42].

Drawing upon the work of Thurstone, Marschak and Lancaster 
[43], McFadden was able to show how his model was linked to the 
economic theory of choice behavior. McFadden then investigated 
further the RUM foundations of the conditional multinomial 
logistic model. He showed that the Luce model was consistent 
with the RUM model with independent and identically distrib-
uted random variables (IID) if and only if the error term had 
a distribution called extreme value type I (also called Gumbel 
distribution).

Before the contribution of Louviere et al. [8,44], DC models 
had been used to analyze behavior that could be observed in 
real market contexts. Louviere and other researchers applied DC 
models to choices collected from respondents who were presented 
profiles of features of hypothetical products; this is what they 
called ‘simulated choice situations’. So, instead of modeling the 
actual choices made by people, as McFadden did with the revealed 
preferences approach, Louviere modeled the choices made by sub-
jects in carefully constructed experimental studies (discrete choice 
experiments), using the stated preferences approach. This new 
approach made it possible to predict values for alternatives that 
could not be judged in the real world (see Figure 2 for an overview).

Examples of probabilistic choice models applied in 
health-state valuation
In the following section, some examples will be provided of PC 
model analyses that have been performed in the field of health-
state valuation. This section does not claim to be exhaustive and 
the studies that will be highlighted are for illustrative purposes 
only. The reader is encouraged to consult the original articles for 
more details.

As early as 1970 the field of health-state valuation recognized 
that Thurstone’s model might be useful for valuing health states 
[45], which was later on applied by Hadorn et al. [46] and Krabbe 
[47]. Stolk et al. [48] compared several health-state methodologies 
to each other, one of which was a DC experiment (DCE) mod-
eled with a conditional multinomial logit analysis to estimate 
the main effects (no second order or higher interactions). The 
classification system that was valued was the EuroQol-5D (EQ-
5D) [49]. The other valuation techniques that they investigated 
were TTO, VAS, rank-ordered logit and Thurstone’s LCJ. Other 
well-known studies that used the conditional multinomial logit 
model to estimate EQ-5D values are Salomon [42], and Hakim 
and Pathak [2]. McCabe et al. [3] used the conditional multinomial 
logit to model HUI-2 and SF-6D values. Coast et al. [50] applied 
the conditional multinomial logit to model best–worst scaling 
preferences for the ICECAP-O instrument.

Ratcliffe et al. [5] valued a disease-specific classification system 
(SQOL-3D), comparing TTO with a DC experiment. They 
analyzed the DCE data with a random effects probit model, in 
which they took into account the fact that multiple responses 
were obtained from the same individual. Additionally, they also 
investigated a rank-ordered logit model. They found that the pro-
bit model resulted in higher values than the rank-ordered logit 
model, and both these methods produced values dissimilar to 
TTO models. Another example of the conditional multinomial 
probit is Brazier et al. who used it to model values for the Asthma 
Quality of Life Classification and the Overactive Bladder-Specific 
Measure [51]. A third example using probit models is Craig et al., 
who used a homoskedastic probit model based on rank responses 
(exploded probit) [52]. Table 1 presents an overview of techniques and 
probabilistic choice  models that can be used for the measurement 
of  health-state values.

Discussion
General considerations
Discrimination is a basic operation of judgment and of generating 
knowledge. Most judgments in daily life consist of making choices 
between some competitive alternatives and are thus inherently 
comparative. Therefore, the core activity of measurement with 
PC models is to compare two or more stimuli so that the data 
provide relevant information on individuals’ choice behavior. PC 
models present relatively simple and straightforward response 
tasks. These are easy to perform from simulated (i.e., hypothetical 
but realistic) scenarios, yet they provide information to arrive at 
quantitative measures.

All probabilistic choice models that allow the estimation of 
values for alternatives are basically versions of the Thurstonian 
LCJ model. Analytical complexity is, unfortunately, typical of 
most probabilistic choice models, in particular the logit models. 
A few software packages (e.g., Stata) have addressed the issue 
by building in analytical procedures that, to varying degrees, 
simplify discrete choice analysis.

Some salient differences between the initial (Thurstone) and 
the subsequent DC models warrant elaboration. First, DC mod-
els were extended to analyze choices between more than two 
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scenarios in a choice set. This refinement is straightforward and 
allows for more realistic scenarios. For instance, these models 
facilitate analyses of choices from sets including an opt-out option, 
such as not being treated at all rather than being treated with two 
different drug regimens, or preferring to be dead rather than to 
live in the two presented health states. Second, whereas the classic 
Thurstone model is only applicable to derive values for empirically 
judged scenarios, the DC models are extended to parameterize 
by regression models the contribution of the levels of attributes 
based on the assessment of a subset of the complete set of scenarios 
[8]. This makes it possible to capture the relationships between 
rankings and levels of the attributes in a value-based health status 
classification system. Some research has already been conducted in 
this area [2,5,50,53]. However, the process of going from choice data 
between states to values for these states is (almost) identical [47]. 
The classic Thurstonian models are particularly suitable when the 
differences between objects are small, as the underlying response 
task (paired comparisons) is very well suited to detecting differ-
ences where direct or monadic measurement methods (e.g., visual 
analogue scale, TTO) will fail. It has been shown that the LCJ 
and extensions of it can even be embedded in the contemporary 
and very general framework of structural equation modeling [54]. 
Moreover, modern computational estimation techniques have 
overcome many of the earlier restrictions, so Thurstone’s model 
can be estimated in its full generality [55]. Third, choice sets with 
more than two health states are in principle more informative 
(fewer choices are needed to yield the same amount of informa-
tion). However, additional assumptions are required to apply such 
wider choice sets ([relaxed] IIA assumption [Appendix: E]). Some 
of these assumptions may be violated in assessing health states. 
Furthermore, recent studies from the EuroQol group provide evi-
dence that using paired comparisons with the five-level classifica-
tion system imposes significant cognitive burden on respondents, 
which might indicate that a choice task with three or more health 
states would become too difficult [56]. Therefore, in the context 
of health-state valuations, it seems more convenient to restrict 

the applications to the standard paired comparison approach or 
ranking.

The Rasch model occupies a special position in the field of 
subjective measurement. Its underlying mathematical theory is a 
special form of the one-parameter IRT model. The Rasch model 
has a specific measurement property – quantifying independently 
the weight of the items (e.g., health domains) and the position of 
the respondents (e.g., a patient’s own health state) – that provides 
a criterion for fundamental measurement. This formal property 
distinguishes the Rasch model from other IRT models used to 
quantify peoples’ responses to items or questions [57]. In contrast 
to IRT and other PC models, the Rasch model is the only model 
that allows for fundamental measurement, thus transforming 
subjective measurements into objective measurements. As such, 
the authors encourage the implementation of the Rasch model 
in the field of health-state valuation and other areas of health 
evaluation research.

Another topic that has gained attention in recent years is vari-
ance-scale heterogeneity [58,59]. Random utility theory states that 
utilities can be decomposed into a systematic (predictable) com-
ponent and a random (unpredictable) component. The most com-
monly applied DC models are limited dependent variable models, 
which confound estimates of the mean (the systematic compo-
nent) and variance (scale factor) of the random component [11]. 
One intuitive explanation of variance-scale heterogeneity is the 
confidence with which respondents answer in a DCE, although 
other explanations are also possible. Flynn et al. demonstrated 
that using latent-class analyses to identify variance-scale hetero-
geneity is a feasible method, and that using such results can lead 
to different (interpretation of) algorithms for certain subgroups. 
In the field of health-state valuation, the matter of variance-scale 
heterogeneity seems less relevant, as here the focus is on measure-
ment and not on prediction of choice behavior, otherwise it is a 
matter of policy. In countries such as the UK a societal perspective 
is used, which means that the utility scale should represent the 
preferences of health states for the general population. In these 

Figure 2. Development of the class of probabilistic choice models over time and by area of research.
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instances, differences in subgroups seem irrelevant. However, a 
policy maker can only decide on the relevance of subgroups if he 
knows them to exist. Nevertheless, correctly identifying relevant 
subgroups is a challenging task for any researcher and no DC 
model is suited to give a definitive explanation of heterogeneity.

Limitations of DC models
As mentioned previously, DC models estimate the relative con-
tribution of attributes and attribute levels. However, in many 
situations, the health-state values need to be anchored on the 
quality-adjusted life years (QALY) scale, where 0 is death and 1 
is full health. There are difficulties with estimating the health-
state ‘death’ in DC experiments. McCabe et al. [3] and Salomon 
[42] both proposed solutions where the state ‘dead’ is mixed in the 
choice set. This way a parameter for the state ‘dead’ is estimated as 
part of the model. However, Flynn et al. [60] notes that estimated 
values are likely to be incorrectly anchored when assumptions 
about the decisions between living states and death are not satis-
fied. When there is a significant proportion of the sample that 
regards all life worth living (e.g., because of religious beliefs) this 
is likely to be true. Additionally, not only is the sample of influ-
ence, but so is the classification system that is being valued. For 
example, when a disease-specific classification system is being 
valued, one expects the range of total health states to be limited. 
Ratcliffe et al. performed a valuation study on the sexual quality 
of life questionnaire (SQOL-3D) [5]. They found that all respond-
ents found the worst health state to be better than death (using 
the TTO). They did not include death in their DCE, but had 
they done so, it would have been likely that all respondents would 
prefer the SQOL-3D health states to death. Such assumptions of 
the random utility model might be violated and thus decrease the 
validity of the results.

Response tasks
Some differences emerge in the simulated behavioral process and 
in the amount and type of information provided by each response 
task. In that light, experts have sought to clearly distinguish 
between rating, ranking and discrete choice tasks. Choice-based 
and non-choice-based techniques differ in that the former attempt 
to simulate human behavior in real-world situations. Only choice-
based tasks have close links with economic theory [8]. This argu-
ment is commonly used in marketing, as consumers in the real 
world are making actual choices between products instead of 
ordering or rating them.

With rating tasks, the respondents assign a value for each pro-
file presented. Rating tasks do not inherently imply comparisons 
between alternatives and have therefore been criticized as being 
unrealistic. In contrast, the ranking approach does inherently imply 
making comparisons between a number of alternative options by 
ordering them according to the respondents’ own preferences. 
Nonetheless, a discrete choice task is considered to be much easier 
than a rating or ranking task (in general, presenting more alterna-
tives to be ranked would correspond to greater difficulty in order-
ing them). However, a discrete choice task would require more 
respondents (or more choice tasks per respondent), since choosing Ta
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one alternative over two or more others is 
less informative than providing ratings (or 
rankings) for each one.

A response task that combines both a 
discrete choice and an indication on the 
strength of the preference could provide 
more information per choice task. Such 
responses can be elicited by presenting 
respondents with two health states. The 
response options could vary from ‘defi-
nitely prefer A’ to ‘definitely prefer B’. 
These responses could be modeled with 
conditional ordinal logit or probit models. 
However, at least to our knowledge such 
models have thus far not been applied 
in the valuation of health states (but note [46]). Nonetheless, 
these models appear very promising as they might require fewer 
respondents, or provide more precise estimates with an identical 
number of respondents. Careful consideration should be paid to 
the feasibility if researchers attempt to use such a methodology. 
Since the response task is extended, cognitive burden is likely to 
increase, which might also lead to more noise in the data.

Another response task that might be useful in the valuation 
of health states is best–worst scaling (BWS), also known as 
maximum difference scaling [61]. There are three types of BWS, 
namely attribute BWS, profile BWS and attribute-level BWS. 
In attribute BWS, respondents choose the best and worst attrib-
utes from those available. An example of the attribute BWS is 
the study by Finn and Louviere [62]. In such a response task, 
respondents select the best and worst attributes of those given. 
In the field of health-state valuation, such a task might provide 
relevant information for the selection of attributes for a classi-
fication system. In profile BWS, respondents are shown several 
profiles (health states of varying attribute levels) and have to 
indicate which profile they consider best and which one they 
consider worst. This task is very similar to a paired comparison 
with more than two profiles, although respondents provide more 
information since they also indicate which profile they consider 
worst. In the field of health-state valuation such a response task 
might be useful; however, if the classification system that is being 
valued consists of many attributes and levels, respondents might 
find this task too difficult to complete [56]. The final type is the 
attribute-level BWS. In this response task, respondents are pre-
sented with a single profile (health state). They have to indicate 
which attribute level they consider to be the best, and which the 
worst attribute level. This type of BWS might prove to be very 
useful in the context of health-state valuation, since the amount 
of information respondents need to process seems lower than in 
a pair-wise comparison. Attribute-level BWS has been applied 
successfully in the field of health-state valuation [50,63]; however, 
the reader is referred to Flynn et al. for some methodological 
considerations [59,60,64].

To implement fundamental measurement of health states, the 
Rasch model needs to be applied. A response task that would 
allow this and make use of the advantages that DC experiments 

offer would appear as follows. Respondents first indicate their 
own health status on the instrument to be valued. Subsequently, 
they are confronted with a choice task that incorporates their 
own health state, and one or more health states that are expected 
to have a somewhat similar value to the respondent’s health 
state. Such a task would require computer adaptive testing, and 
it would only be feasible when patients are used instead of the 
general population [32]. This is because the general population 
on average suffers from very few health limitations, and thus a 
respondent’s own health state would be dominant to almost all 
other health states. In addition, the patient sample needs to be 
heterogeneous; ideally, it should cover the entire health-state 
continuum.

Probabilistic choice models versus other methodologies
Assigning values to health states with probabilistic choice mod-
els that are based on response tasks, such as ranking of states or 
choices between states (e.g., paired comparisons), may be pre-
ferred to trade-off techniques, such as the SG and the TTO, 
which have been frequently applied to assign values to health 
states [65–67]. For years, SG was considered the gold standard 
because it was developed under the expected utility theory by 
von Neumann and Morgenstern (vNM). However, as empirical 
research has shown, people’s behavior systematically violates the 
underlying assumptions of the vNM utilities. People have dif-
ficulty operating with probabilities, and they may be averse to 
taking risks [68].

TTO was developed by Torrance et al. as an alternative to 
SG that would be easier to administer. The main characteris-
tic of TTO is that it collapses into one single measure of the 
relationship between a health state, its duration and its value. 
However, there is some doubt about the validity of the assump-
tion in the TTO method, which states that people can trade 
off a constant proportion of their remaining duration of life 
irrespective of the number of years that remain. In fact, this 
technique assumes that the amount of time an individual is 
willing to give up to be in a given health state is independent 
of the time horizon of that state. Research has shown that the 
value of health depends on the time spent in a certain health 
state. For states better than death, a longer duration may be 

Figure 3. Deriving paired comparison data based on rank data.
Reproduced with permission from [47].

A

A

B

B

C

C

D

D

Rank
ordering 

‘Exploded’
ranking

ii
iv

v

vi

Paired
comparisons

B B

A A

C C

D D

ii
ii

ii

iii iiiiii

i

iv

vvi

Probabilistic choice models in health-state valuation research



 Expert Rev. Pharmacoecon. Outcomes Res. 13(1), (2013)102

Review

preferred over a shorter duration, while the opposite may hold 
for states worse than death [69]. In addition, certain states better 
than death may be considered worse than death as the amount 
of time in such states increases. This implies more complex 
relationships than the standard linear relationship of duration 
that is assumed with TTO.

Some researchers argue that both SG and TTO response tasks 
might be regarded as a series of DC experiments since respond-
ents make a choice between two health states [52] (however, note 
that it is long and well known that iterative tasks of this type are 
subject to starting point bias – e.g., [70] – and that most DCE 
researchers would generally not agree with such a characteriza-
tion). For example, consider a TTO in which a respondent is 
asked to choose between 10 years in health state A, or 8 years in 
full health. This single question might be regarded as a paired 
comparison. Suppose the respondent chooses 8 years in full 
health, so the TTO continues and produces another scenario, 
10 years in health state A, or 4 years in full health. Again, this 
question can be regarded as a paired comparison. Suppose now 
that the respondent indicates to be indifferent between the two 
health states. Since both SG and TTO are iterative tasks until a 
point of indifference is found, each health state utility is meas-
ured by a series of paired comparisons (in the example above 
only two). The authors would like to stress, however, that these 
tasks contain factors extraneous to health (such as risk aversion 
in SG and time preference in TTO). Therefore, the scales that 
such techniques produce might include dimensions other than 
health and might thus not be unidimensional (as is required in the 
QALY framework). Nonetheless, modeling TTO and SG tasks 
as PC models might improve the health-state values [52]. In both 
SG and TTO only a single (impaired) health state is valued. As 
such, these response tasks could be regarded as monadic response 
tasks. The DC experiments using pairwise or multiple compari-
sons have simultaneous assessment of multiple health states. This 
puts constraints on the possible biases that are associated with 
monadic measurement approaches. One recent study attempted 
to compare the TTO technique with a DCE that includes a time 
attribute [71]. The authors showed that adding a time attribute to 
a health state is feasible for eliciting health-state values; however, 
more research is needed to verify that the constant proportional 
TTO in such a DCE is not violated.

 Whereas visual aids and face-to-face interviews may be neces-
sary in the application of SG and TTO [72], the VAS technique 
can easily be self-administered. Furthermore, there are some simi-
larities between the VAS and the ranking or the discrete choice 
tasks, but only when respondents position a number of health 
states simultaneously on a single scale (multi-item VAS). Then 
they are implicitly comparing health states and making deci-
sions about which ones are preferable [73,74]. For this reason, the 
multi-item VAS may be regarded as a compound task of multiple 
paired comparisons for (discrete) choices supplemented with a 
level of rating. However, the above is not applicable to the single-
item VAS, which has some methodological flaws; in particular, 
it is prone to end-aversion and context bias. Furthermore, it is 
not embedded in a clear underlying theoretical measurement 

framework [75–78]. In addition, the anchors in these scales are 
potentially ambiguous or not noticed at all by respondents [79,80].

It seems likely that the multi-item VAS, Thurstone scaling, 
and the DC models will produce almost identical results. The 
DC experiments, however, prove to have an advantage over VAS: 
the former may eliminate any context bias that might occur in 
the VAS [73,78]. Nevertheless, systematic comparisons between 
health state values derived with DC models and other elicitation 
techniques are rarely made [81]. To explore the possible benefits 
of ‘modern’ methods such as discrete choice modeling in valuing 
health states, initial attempts have been made to compare these 
various methodologies [48,51].

Expert commentary
PC models have become a focal point of attention and work in 
the area of health evaluation, especially in health economics. In 
particular, there has been rapid growth in the use of DC models 
to derive values by trading off between attributes of different 
natures (e.g., health outcomes vs process attributes) with respect 
to potential competing goods or services. Modeling individuals’ 
preferences with the current repertoire of techniques and instru-
ments has often been found to be difficult. This has encouraged 
researchers to develop and make available more sophisticated 
statistical models and programs. Recent work considers PC mod-
els as potentially straightforward means to assess health-state 
values. PC models are now the object of investigations comparing 
their properties with those of more widely applied techniques for 
health-state valuation.

Five-year view
Current research on health-state valuation focuses on the com-
parison between PC models and widely applied techniques such 
as SG and TTO. The latter techniques are associated with biases 
that are caused by the elicitation technique. Choice experiments 
offer a great alternative as elicitation techniques since these are 
less associated with known biases. The largest body of research is 
predominantly being published by health economists and econo-
metricians. To a smaller extent, researchers with a background 
in psychology or psychometrics are involved in this field. The 
authors argue that both of these disciplines should strive to keep 
up to date with one another. There have been a great many 
advances in choice modeling by econometricians that might be 
unknown to many psychologists/psychometricians. Similarly, 
many econometricians might fail to appreciate the value of 
psychometric innovations. There are very interesting ongoing 
attempts to arrive at a generalized measurement framework that 
incorporates many distinct analytical techniques to quantify 
subjective phenomena, such as factor analysis [82], multidimen-
sional scaling or unfolding techniques [36,83,84], Rasch analysis 
and item response theory [26,85,86], and structural equation mod-
eling [54,87]. All of these techniques have in common that they 
try to scale a (latent) trait or construct. This implies that all of 
these techniques could in principle be used to measure the values 
of health states. Although it is currently unknown whether these 
techniques can be embedded in the random utility framework, 
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future studies might discover the assumptions under which these 
techniques can be incorporated in random utility theory. The 
authors hope that these methodologies will be identified by more 
researchers as valid alternatives for the current health-state valu-
ation techniques. The combination of these methodologies may 
eventually lead to a dynamic concept of health status, where 
respondents themselves decide the most relevant attributes. Such 
methodologies would make the most use of individual variabil-
ity in preferences and aggregate them to values usable for the 
estimation of QALYs.
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Key issues

• Probabilistic choice models have been identified as an alternative method for the estimation of health-state values.

• Many different models are available; researchers should carefully consider the assumptions, advantages and disadvantages of each 
particular model.

• Different models require different response tasks. Researchers should carefully consider the effect of the response tasks on 
respondents’ cognitive burden.

• Contemporary research focuses on the comparison between probabilistic choice models and techniques such as standard gamble and 
time trade-off.

• Future research should focus on extending the scope of health-state valuation by investigating methodologies such as item response 
theory and multidimensional scaling.
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Appendix
A. Law of comparative judgment
Thurstone [1] proposed that perceived physical phenomena or 
subjective concepts (e.g., health states, treatment outcomes and 
process characteristics) can be expressed as follows:

θi i= α + εi  (1)

where θ
i
 is the true weight of an object (e.g., item, stimulus, 

health state) i, α is the measurable component of that weight for 
the object i, and ε is a random error term. The assumption in the 
model proposed by Thurstone is that ε is normally distributed. 
This assumption yields the binomial probit model.

In Thurstone’s terminology, choices are mediated by a ‘dis-
criminal process’. He defined this as the process by which an 
organism identifies, distinguishes or reacts to stimuli. Consider 
the theoretical distributions of the discriminal process for any 
two objects, like two different health states i and j. In the LCJ 
model, the standard deviation of the distribution associated with 
a given health state is called the discriminal dispersion of that 
health state. Discriminal dispersions may be different for  different 
health states.

Let θ
i
 and θ

j
 correspond to the scale values of the two health 

states. The difference θ
i
 – θ

j
 is measured in units of discrimi-

nal differences. This difference process, θ
i
 – θ

j
 = (α

i
 − α

j
) + (ε

i
 

− ε
j
), is normally distributed with mean θ

i
 – θ

j
 and variance σij

2  
 corresponding to

σ = σ σ − ρ σ σij
2

i
2 + j

2 2 ij i j  
(2)

Thurstone stated that the relation between the difference in 
the means of what he called the discriminable process, θ

i
 – θ

j
, 

the z score of the probability of selecting the one object as larger 
(better) than the other, and the variance and correlations of the 
random variables θ

i
 and θ

j
 can be modeled. This is known as the 

law of comparative judgment:

θ −θ = σ σ − ρ σ σi j zij ( i
2 + j

2 2 ij i j )  
(3)

where θ
i
, θ

j
 denotes the standard deviations of the two stimuli 

(health states) i and j, ρ
ij
 denotes the correlation between the 

pairs of discriminal processes i and j, and z
ij
 is the unit normal 

deviate corresponding to the theoretical proportion of times 
health state j is judged greater than health state i. This basic 
form of the model can be represented as, θ

i
 – θ

j
 = z

ij
, for which 

the probability that object j is judged to have more of an attribute 
than object i is

Pij
i j

ij
= φ

−











θ θ

σ  
(4)

where φ is the cumulative normal distribution with mean zero 
and variance unity.

B. Bradley–Terry–Luce model
While the probit model (by Thurstone) has normally distributed 
error terms, a logit model is simply a log ratio of the probabil-
ity of choosing a stimulus to the probability of not choosing a 
stimulus. If P is a probability, then P/(1 − P) is the correspond-
ing odds, and the logit of the probability is the logarithm of the 
odds. The logit function is defined as the inverse of the logistic 
function. The logistic model is not linear, nor additive. Rather, 
it assumes an S-shaped response curve. One of the reasons the 
logit model was formulated was its’ ease of use. In compari-
son, probit models require the computation of integrals, which 
is why these models were less often used in the past. Modern 
computing however has made this computation fairly simple. 
The main difference between the logit and probit models lies on 
the distributional assumption of the error term. Consequently, 
the weighting of the cumulative probabilistic curve is different, 
as the logistic distribution tends to be a little flat tailed. The 
coefficients obtained with these two models are actually fairly 
close in most cases.

In the Bradley–Terry–Luce model [2,3], the probability that 
object i is judged to have more of an attribute than object j is:

 

Pij =
e
 i j

1+e i j

θ −θ

θ −θ

 

(5)

where θ
i
 and θ

j
 are respectively the scale values or weights of 

the two objects.

C. Rasch model
In the Rasch model for dichotomous data [4], the probability that 
the outcome is correct (or better than another) is given by:

 

P{Xni =1}
e n i

1 e n i
=

η −θ

+
η −θ

 
(6)

where η
n
 identifies a characteristic of the person n, as for 

instance his or her ability or the quality of his or her health sta-
tus, and θ

i
 refers to the item i, as for instance the difficulty of 

an item (or seriousness of a health state). By an interactive con-
ditional maximum likelihood estimation approach, an estimate 
θ

i
 − θ

j
 is obtained without involvement of η, which is specific to 

the Rasch model. This estimation approach leads to invariance: 
a fundamental aspect of measurement [5].

D. Multinomial logit models versus conditional 
multinomial logit models
There is much confusion in the literature about the differences and 
similarities between multinomial and conditional logit models. 
The authors have contacted several experts in this field of research 
and received almost as many different explanations as experts 
approached. Multinomial logistic and conditional (multinomial) 
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logistic regression models are different but often the terminology 
to describe the model is used differently or incorrectly. In fact, 
the term multinomial logit is quite confusing because different 
fields and people use it to refer to different things. The term con-
ditional logit unfortunately includes a wide array of sub-models 
that depend on whether certain effects of interest are generic or 
differ for at least one of the choice alternatives.

The term multinomial logit (MNL) model refers to a regression 
logit model that generalizes logistic regression by allowing more 
than two discrete outcomes. This model assumes that data are 
case specific; that is, each independent variable has a single value 
for each case. Consider an individual choosing among K alter-
natives (e.g., health states) in a choice set. Let X

j
 represent the 

characteristics of individual j and β
k
 the regression parameters 

(each of which is different, even though X
j
 is constant across 

alternatives):

 

Ujk k Xjk=1

K
= β∑

 
(7)

Let P
jk
 denote the probability that individual j chooses  alternative 

k. The probability that individual j chooses  alternative k is

 

Pjk
e kXj

1 e kXj
k=1

K
=

β

+
β

∑
 

(8)

It is important to clarify some terminology. The model men-
tioned and used for behavioral modeling of polytomous choice 
situations, developed by McFadden [6], is generally called MNL. 
Yet some important distinctions have to be made between the (con-
ventional) MNL model and the conditional MNL model. Although 
the McFadden model is often simply referred to as the MNL model, 
this refers to the conditional model. In conditional logistic regres-
sion, none, some or all of the observations in a choice set may be 
labeled. Thus, McFadden’s choice model (discrete choice) is a 
special case of conditional logistic regression (conditional logistic 
analysis is also applied in epidemiology when analyzing matched 
case control data). In the conditional logit model, θ is a single vec-
tor of regression coefficients; the explanatory variables Z assume 
different values for each alternative; and the impact of a unit of Z 
is assumed to be constant across alternatives:

 
Ujk Zjkk 1

K
= θ

=
∑

 
(9)

The probability that the individual j chooses alternative k is

 

Pjk
e
( Zjk )

1 e
( Zjk )

k 1

K
=

θ

+
θ

=
∑

 

(10)

Both models can be used to analyze the choice of an individual 
among a set of K alternatives. The central difference between the 
two is that the conventional MNL model focuses on the individ-
ual as the unit of analysis and uses the individual’s characteristics 
(e.g., gender, age, religion) as explanatory variables. In contrast, 
the conditional MNL model focuses on the set of alternatives for 
each individual and the explanatory variable comprises charac-
teristics of those alternatives. This is the typical mechanism (see 
Figure 1) that seems required in the case of measurement (health-
state valuation), whereas the conventional MNL model is used for 
the prediction of choice behavior. It is possible to combine the two 
models to simultaneously take into account both the alternatives’ 
and the individual’s characteristics as explanatory variables. This 
is called a mixed-logit model:

 
Ujk k Xjk 1

K
Zjkk 1

K
= β

=
∑ + θ + ε

=
∑

 
(11)

Where U
jk
 is the utility of the alternative k assigned by the 

individual j. U
jk
 depends on both the alternatives’ characteristics 

X and on the individuals’ characteristics Z, plus a nonestimable 
part represented by ε.

In addition to the mixed-logit model (where ‘mixed’ refers to 
characteristics), where both respondents’ and stimuli character-
istics are being taken into account, an even more general model 
is the logit-mixture model (where ‘mixture’ refers to the distri-
butions of error terms). This model also takes individual taste 
variation into account, by partitioning the error term in a random 
part (or any other type of distribution) and an extreme value part. 
The model has the following form:

 
Ujk xjk jzjk jk=β + µ + ε

 (12)

where βx
jk
 is the systematic component of the utility (which can 

include both respondent and attribute characteristics) and µ
j
z

jk
 

and ε
jk
 are error terms; µ is a vector of random terms with a mean 

of zero (or of any other distribution than the normal distribution) 
and ε

jk
 is IID and has an extreme value type 1 distribution. The 

component µ
j
z

jk
 allows for the induction of heteroscedasticity 

and correlation across the random part of the utility of the dif-
ferent alternatives in the choice set. It is this model that in the 
literature is most often referred to as the mixed-logit model. As 
stated before, these types of models, with a component directed 
on the prediction of respondent characteristics, are less valuable 
in the case of the measurement (valuation) of health states, but 
of course, may be very relevant for evaluation research in general.

Interestingly, the conditional multinomial logistic model could 
be extended to analyze ordinal preferences. Accordingly, it is con-
ceivable that rank orderings can be generated by a process in 
which an individual first chooses his most preferred alternative 
from all available alternatives. From the remaining alternatives 
he again chooses his most preferred one – thereby stating his 
second preference – and so on, until there is only one remaining 
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alternative, which is, of course, his last preference. Thus, an 
observed preference order can be understood as being generated 
by a repeated selection process in which the best alternative is 
always chosen and subsequently deleted from the choice set. The 
later decisions are assumed to be independent of the previous 
ones, which is to say that IIA holds. This model is also called 
‘conditional logit’, ‘exploded logit’ or ‘rank-ordered logit’, as the 
ranking of K states is exploded into K − 1 decision stages (see 
Figure 3). The contribution of using a rank-ordered logit model is 
that more information is incorporated in the estimation of the 
representative function compared with the standard logit models.

E. Independence of irrelevant alternatives
The IIA property, which arises from the assumption of independ-
ent random errors and equal variances for the choice alternatives 
(IID assumption), implies that the odds of choosing one alterna-
tive over another must be constant regardless of whatever other 
alternatives are present [3]. To give an example put forward by 
Debreu [7] where IIA does not hold: suppose an individual wants 
to buy a CD, and she is equally likely to choose a Beethoven 
or a Debussy recording (Pr{B|B, D} = Pr{D|B, D} = 0.5). Now 
suppose that she encounters a second Beethoven recording that 
she likes just as much as the first (Pr{B

1
|B

1
, B

2
} = Pr{B

2
 |B

1
, 

B
2
} = 0.5). If she were rational, how would she choose among 

all three recordings {B
1
, B

2
, D}? We would expect Pr{B

1
|B

1
, B

2
, 

D} = 0.25, Pr{B
2
|B

1
, B

2
, D} = 0.25 and Pr{D|B

1
, B

2
, D} = 0.5. 

However, IIA implies that Pr{B
1
|B

1
, B

2
, D} = 1/3, Pr{B

2
|B

1
, B

2
, 

D} = 1/3, and Pr{D|B
1
, B

2
, D} = 1/3 (in this context this makes 

perfect sense, as a second Beethoven recording is unlikely to be 
irrelevant from the first). This IIA assumption may be too restric-
tive in practical situations can be unrealistic in many settings. 
The outcomes that could theoretically violate IIA (such as the 
outcome of multicandidate elections, or according to Arrow [8] 
any choice made by humans) may make conditional MNL an 
invalid estimator. Nonetheless, when IIA reflects reality, it offers 
many advantages, but whether IIA holds in a particular setting is 
an empirical question amenable to statistical investigation. There 
seems to be ample scope for research aimed at developing models 
that allow for managing contexts where IIA may not hold. Some 
models such as the logit-mixture relaxed the assumption of IIA. 
This means that these models can allow for random taste varia-
tion, correlations in unobserved factors over time and unrestricted 
substitution patterns. McFadden and Train showed that given an 
appropriate specification of variables and distribution of coeffi-
cients, a logit-mixture can approximate to any degree of accuracy 
any true random utility model of  discrete choice [9].
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