243
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part II. Effect of process variables on protein model drug encapsulation efficiency

, , , , , , & show all
Pages 156-165 | Received 22 Jan 2013, Accepted 10 Jun 2013, Published online: 22 Jul 2013
 

Abstract

This study investigates encapsulation efficiency of model drug, encapsulated by magnetic poly d,l-lactic-co-glycolic acid (PLGA) nanoparticles (NPs). This is the following part of our preceding paper, which is referred in this paper as Part I. Magnetic nanoparticles and model drug human serum albumin (HSA)-loaded PLGA NPs were prepared by the double emulsion solvent evaporation method. Among five important process variables, concentration of PLGA and concentration of HSA in the inner aqueous phase along with their cross-effect had the strongest influence on the encapsulation efficiency. Encapsulation efficiency of nanoparticles ranged from 18% to 97% depending on the process conditions. Higher encapsulation efficiencies can be achieved by using low HSA and high PLGA concentrations. The optimization process, carried out by exact mathematical tools using GAMSTM/MINOS software makes it easier to find out optimum process conditions to achieve comparatively high encapsulation efficiency (e.g. 92.3%) for relatively small-sized PLGA NPs (e.g. 155 nm).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.