

Acta Radiologica: Therapy, Physics, Biology

ISSN: 0567-8064 (Print) (Online) Journal homepage: informahealthcare.com/journals/ionc17

Retention of ¹²⁵I Given as ¹²⁵I-5-IODO-2'-Deoxyuridine to Mice after 180 MeV Proton or ⁶⁰Co Gamma Irradiation

K. J. Johanson

To cite this article: K. J. Johanson (1972) Retention of 125 I Given as 125 I-5-IODO-2'-Deoxyuridine to Mice after 180 MeV Proton or 60 Co Gamma Irradiation, Acta Radiologica: Therapy, Physics, Biology, 11:5, 465-471, DOI: $\underline{10.3109/02841867209129792}$

To link to this article: https://doi.org/10.3109/02841867209129792

RETENTION OF ¹²⁵I GIVEN AS ¹²⁵I-5-IODO-2'-DEOXYURIDINE TO MICE AFTER 180 MeV PROTON OR ⁶⁰Co GAMMA IRRADIATION

by

K. J. Johanson

Iodine-labelled thymidine analogues, for example ¹²⁵I-5-iodo-2'-deoxyuridine (¹²⁵IUdR), are specific precursors for DNA and their only labelled catabolic products of significance appear as I⁻ (Hughes et coll. 1964). To prevent accumulation of ¹²⁵I in the thyroid after the injection of ¹²⁵IUdR into mice, NaI may be introduced into the drinking water from the day before injection; most of the ¹²⁵I⁻ is then excreted in the urine (Prusoff et coll. 1960). This technique has been used in combination with whole body counting to investigate the effect of irradiation on ¹³¹I retention in whole mice and in cotton rats after the administration of ¹³¹IUdR (Gitlin et coll. 1962, O'Farrell & Dunaway 1969). Gitlin et coll. reported a 50 to 60 per cent depressed retention of ¹³¹I given as ¹³¹IUdR even after 25 or 50 R 250 kV roentgen irradiation. The ¹²⁵I retention after ¹²⁵IUdR injection probably reflected quantitatively the ¹²⁵IUdR incorporation into DNA. Johanson & Larsson (1972) stated that the ¹²⁵IUdR incorporation into DNA of the intestine and spleen of mice was much depressed after proton and

This work was supported by the Swedish Atomic Research Council and the Swedish Cancer Society. Submitted for publication 13 January 1972.

gamma irradiation. The aim of the present investigation was to compare by whole body measurements the effects of 180 MeV proton and ⁶⁰Co gamma radiation on the incorporation and retention of ¹²⁵I given as ¹²⁵IUdR. It was also hoped to elucidate the possible use of such labelled DNA precursors that can be used for whole body scintigraphic investigations of cellular kinetics.

Materials and Methods

Animals. Female NMRI mice weighing 20 to 25 g were given water and food ad libitum; 0.1 % NaI was added to the drinking water from 24 hours before injection of ¹²⁵IUdR.

Irradiation. The mice were irradiated in plastic tubes. Gamma irradiation was administered 40 cm from a freely radiating ⁶⁰Co gamma source under conditions previously described (Johanson & Larsson). The dose rate was 46 rad per minute as measured by Fricke dosimetry (Spinks & Woods 1964). Proton irradiation was given with the 180 MeV proton beam from the Uppsala synchrocyclotron as previously described (Johanson & Larsson). The control mice were sham-irradiated under conditions similar to the gamma irradiation.

Administration of ¹²⁵IUdR. Two hours after irradiation the mice were given 0.08 μ Ci ¹²⁵IUdR (Radiochemical Centre, Amersham) per gram body weight intraperitoneally in isotonic saline at a specific activity of 100 μ Ci/ μ mol and then placed three in a cage (floor area 450 cm²). The litter was changed near the middle of the period between injection and killing to decrease external contamination.

Radiometry and organ preparation. The ^{125}I activity of the whole mice was determined twenty hours after injection of $^{125}\text{IUdR}$ with a 3" (7.6 cm) NaI(Tl) crystal with an 1.5" (3.8 cm) well and 0.1 μ Ci ^{125}I in 'mice geometry' as a standard. The mice were killed by cervical dislocation within an hour of whole body counting and the small intestine and spleen prepared for ^{125}I activity determination. The retention of ^{125}I was calculated as a percentage of the dose injected and further expressed as a percentage of that of the control.

Results

The effect of irradiation of the ¹²⁵I retention is presented in Figs 1, 2 and 3. At low doses (40 rad, for spleen also 80 rad) the ⁶⁰Co gamma radiation seems to affect the ¹²⁵I retention with higher efficiency than the 180 MeV protons; this effect was observed in the organs examined (Figs 2, 3) as well as in the whole

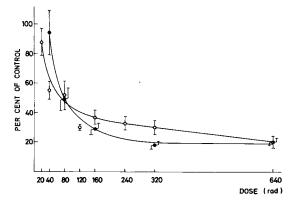


Fig. 1. Retained ¹²⁵I activity in irradiated mice, 20 hours after injection of ¹²⁵IUdR. ○ ⁶⁰Co gamma. • Proton. Each point represents the average of 6 mice ± SE.

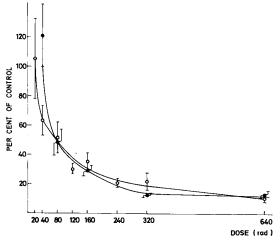


Fig. 2. Retained ¹²⁵I activity in the small intestine of irradiated mice, 20 hours after injection of ¹²⁵IUdR. O ⁶⁰Co gamma. ● Proton. Each point represents the average of 6 mice ± SE.

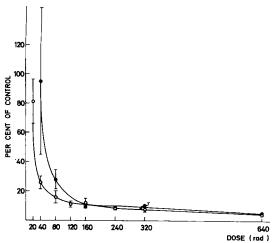


Fig. 3. Retained ¹²⁵I activity in the spleen of irradiated mice, 20 hours after injection of ¹²⁵IUdR. ○ ⁶⁰Co gamma. ● Proton. Each point represents the average of 6 mice ± SE.

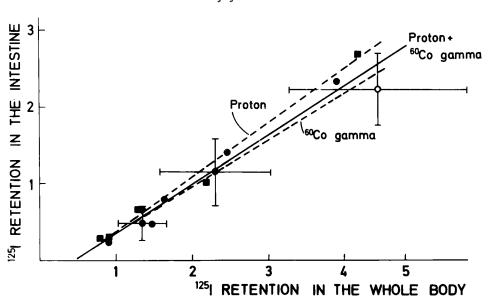


Fig. 4. Regression of $^{125}\mathrm{I}$ activity retained in the small intestine as a function of the $^{125}\mathrm{I}$ activity remaining in the whole body, 20 hours after injection of $^{125}\mathrm{IUdR}$. \circ Control. \blacksquare Proton. \bullet $^{60}\mathrm{Co}$ gamma.

body (Fig. 1). In the dose interval of 80 to 640 rad, ⁶⁰Co gamma and proton irradiation had similar effects on the ¹²⁵I retention in the small intestine, the small differences being within the experimental error. The same effects occurred in the spleen at doses between 160 and 640 rad; at 160 and 320 rad, however, the protons appeared to be more effective in affecting the ¹²⁵I retention in the whole body. The most marked decrease of ¹²⁵I retention occurred in the spleen after irradiation with 160 rad or more.

The ¹²⁵I retention in the whole body is compared to that in the small intestine and the spleen in Figs 4 and 5. The ¹²⁵I retention in the small intestine and spleen should be a better measure of the ¹²⁵IUdR incorporation into DNA than the ¹²⁵I retention in the whole body. Extrapolation in Fig. 4 gives about 0.4 per cent of the injected dose retained in the whole body when no ¹²⁵I remained in the small intestine.

Discussion

The ¹²⁵I retention proved to be 4.5 per cent in the unirradiated mice at 20 hours after the ¹²⁵IUdR injection. About 0.4 per cent of this amount was probably due to contamination of the skin as indicated in Fig. 4 as well as in the work

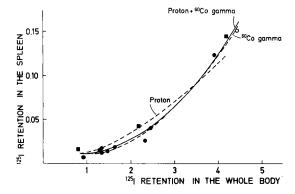


Fig. 5. Regression of ¹²⁵I activity retained in the spleen as a function of the ¹²⁵I activity remaining in the whole body, 20 hours after injection of ¹²⁵IUdR. ○ Control. ■ Proton. • ⁶⁰Co gamma.

of Hughes et coll. (1964). The remaining 4.1 per cent were probably mostly incorporated into DNA of proliferating tissues. In 6-week-old mice, 8.3 per cent of the injected ¹³¹I, given as ¹³¹IUdR, were retained at 20 hours after injection (Hughes et coll.). Since these authors used younger mice than those of the present work a higher ¹³¹I retention would be expected. The corresponding retention in cotton rats was 3 per cent at 2 days after injection (O'Farrell & Dunaway).

Incorporation of ¹²⁵IUdR into DNA in proliferating tissues after irradiation has previously been investigated by the extraction and determination of the specific activity (Johanson & Larsson). This method indicated that ¹²⁵IUdR incorporation into DNA of the small intestine was depressed to 22 per cent of the control 2 hours after proton irradiation at 200 rad and to 9 per cent after 400 rad. No significant differences were evident in the results obtained by autoradiographic and biochemical methods at the above doses at 24 hours after irradiation. Interpolation in Fig. 2 gives a ¹²⁵I retention in the small intestine of 23 per cent of the control after proton irradiation at 200 rad and about 13 per cent at 400 rad. It would appear that similar results may be obtained by evaluating the effects on the small intestine of irradiation with these three independent methods. A similar comparison of the results of the spleen experiments reveals more diverse results, probably due to the fact that a marked decrease in the DNA content of the spleen occurs after irradiation (cf. Johanson & Larsson). This decrease reflects a similar decrease in the cell content.

The two types of radiation seem similarly to affect the 125 I retention in the dose range 80 to 640 rad (160 to 640 rad for the spleen). The RBE for 180 MeV protons of 1.2 \pm 0.3 from previous work on the incorporation of 125 IUdR into intestinal DNA at two hours after irradiation (Johanson & Larsson) appears to be in conformity with the present investigation.

The large differences at doses of 40 rad (and 80 rad for the spleen) are surprising. Figs 1, 2 and 3 indicate however, large standard deviations so that the individual variation was considerable. The possible effect of stress due to differences in the irradiation techniques cannot be excluded.

The findings have a bearing upon the problem on how to find suitable labelled precursors for diagnostic investigations of cellular proliferation in man. Only limited possibilities exist of labelling natural precursors of DNA with gamma or positron emitting nuclides. Although formate labelled with ¹¹C (positron emitter 0.97 MeV, half-life 20.5 min) can now be produced and labelling of thymidine with ¹¹C is under investigation (STENSTRÖM 1971), the low ¹¹C activities available and the short half-life become limiting factors. Labelled base analogues have to be used for external detection. Iododeoxyuridine seems to be the most useful; 131 IUdR and 125 IUdR, which are commercially available, and, for example, 123IUdR or 132IUdR may all be possible alternatives. 123I has a halflife of 13.0 hours disintegrated by electron capture resulting in even gamma rays (0.159 MeV). ¹³²I is a beta emitter with a half-life of 2.3 hours; gamma rays of various energies are also emitted. The short half-life of ¹²³I will result in radiation exposure levels that cannot exceed a small percentage of those from ¹³¹I in procedures completed during one day (Myers 1963). ¹²³I can be produced by cyclotron from 123Te or 123Xe to give acceptable activities and rather pure ¹²³I (Hupf et coll. 1968, Lebowitz et coll. 1971). ¹³²I generators are commercially available. 123 IUdR or 132 IUdR may be a valuable tool in medical diagnosis for examining cellular proliferation in man. Thymidine is incorporated preferentially over IUdR by a factor 2 to 3 (Fox & Prusoff 1965, Dethlefsen 1970); on the other hand the reutilization of IUdR is less than that of thymidine.

SUMMARY

The effect of 180 MeV proton and $^{60}\mathrm{Co}$ gamma radiation on $^{125}\mathrm{I}$ retention 20 hours after $^{125}\mathrm{IUdR}$ injection was investigated in the whole mouse, the small intestine and the spleen. The RBE for 180 MeV protons of 1.2 ± 0.3 from previous work seemed to be confirmed. Labelled precursors for diagnostic examinations of cellular proliferation in man are discussed.

ZUSAMMENFASSUNG

Die Wirkung von 180 MeV Protonen — und 60 Co Gamma-Strahlung auf die 125 I Retention 20 Stunden nach 125 IUdR Injektion wurde an der ganzen Maus, am Dünndarm und an der Milz untersucht. Der RBE-Wert für 180 MeV Protonen von 1,2 \pm 0,3 von früheren Untersuchungen scheint bestätigt zu sein. Gezeichnete Vorstufen für diagnostische Untersuchungen der Zellproliferation beim Menschen werden diskutiert.

RÉSUMÉ

L'effet des protons de 180 MeV et de la radiation gamma du ⁶⁰Co sur la rétention de ¹²⁵I 20 heures après injection de ¹²⁵IUdR a été étudié sur la souris entière, l'intestin grêle et la rate. L'EBR pour les protons de 180 MeV évalué à 1,2 ± 0,3 dans un travail précédent paraît confirmée. L'auteur examine l'intérêt des précurseurs marqués pour les examens diagnostiques de la prolifération cellulaire chez l'homme.

REFERENCES

- Dethlefsen L. A.: Reutilization of ¹⁸¹I-5-iodo-2'-deoxyuridine as compared to ³H-thymidine in mouse duodenum and mammary tumor. J. nat. Cancer Inst. 44 (1970), 827.
- Fox B. W. and Prusoff W. H.: The comparative uptake of I¹²⁵-labelled 5-iodo-2'-deoxyuridine and thymidine-H³ into tissues of mice bearing hepatoma-129. Cancer Res. 25 (1965), 234.
- GITLIN D., COMMERFORD S. L., AMSTERDAM E. and HUGHES W. L.: X-rays affect the incorporation of 5-iododeoxyuridine into deoxyribonucleic acid. Science 133 (1962), 1074.
- Hughes W. L., Commerford S. L., Gitlin D., Krueger R. C., Schultze B., Shah V. and Reilly P.: Deoxyribonucleic acid metabolism in vivo: I. Cell proliferation and death as measured by incorporation and elimination of iododeoxyuridine. Fed. Proc. 23 (1964), 640
- HUPF H. B., ELDRIDGE J. S. and BEAVER J. E.: Production of iodine-123 for medical applications. Int. J. appl. Radiat. 19 (1968), 345.
- Johanson K. J. and Larsson B.: Effect of 180 MeV protons or ⁶⁰Co-gamma radiation on the incorporation of ¹²⁵I-5-iodo-2'-deoxyuridine into intestinal and splenic deoxyribonucleic acid of mice. Acta radiol. Ther. Phys. Biol. 11 (1972), 452.
- LEBOWITZ E., GREENE M. W. and RICHARDS P.: On the production of ¹²³I for medical use. Int. J. appl. Radiat. 22 (1971), 489.
- Myers W. G.: Comparisons of I¹³¹, I¹²⁵ and I¹²³ for in vivo and in vitro applications in diagnosis. *In:* VIIth international congress of internal medicine. Vol. II. Edited by E. Wollheim and B. Schlegel. Georg Thieme Verlag, Stuttgart 1963.
- O'FARRELL T. P. and Dunaway P. B.: Effects of acute ionizing radiation on the incorporation of ¹³¹IUdR by cotton rats, Sigmodon hispidus. Radiat. Res. 38 (1969), 109.
- Prusoff W. H., Jaffe J. J. and Günther H.: Studies in the mouse of the pharmacology of 5-iododeoxyuridine, an analogue of thymidine. Biochem. Pharmacol. 3 (1960), 110.
- Spinks J. W. T. and Woods R. J.: An introduction to radiation chemistry. Chapter 4. John Wiley & Sons, New York 1964.
- Stenström T.: Personal communication (1971).