

ISSN: 1388-0209 (Print) 1744-5116 (Online) Journal homepage: informahealthcare.com/journals/iphb20

Central Nervous System Receptor Activities of Some Malaysian Plant Species

L.Y. Chung, S.H. Goh & Z. Imiyabir

To cite this article: L.Y. Chung, S.H. Goh & Z. Imiyabir (2005) Central Nervous System Receptor Activities of Some Malaysian Plant Species, Pharmaceutical Biology, 43:3, 280-288, DOI: 10.1080/13880200590928889

To link to this article: https://doi.org/10.1080/13880200590928889

Published online: 07 Oct 2008.

Submit your article to this journal 🗹

View related articles

Citing articles: 1 View citing articles 🕑

Central Nervous System Receptor Activities of Some Malaysian Plant Species

L.Y. Chung¹, S.H. Goh², and Z. Imiyabir³

¹Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; ²Forest Research Institute Malaysia, Kuala Lumpur, Malaysia; ³Forest Research Center, Sepilok, Sandakan, Sabah, Malaysia

Abstract

In this investigation, 185 plant samples representing more than 30 plant families collected from the Malaysian forests were assessed for their ability to inhibit specific radioligand binding to 5HT1a, GABA_B, and dopamine (D2S) receptors. For this study, 96-well microplate filtration assays were adopted, and the screening parameters including screening window factor (z factor) and z' factor indicated that the assays adopted were robust and suitable for medium-throughput screening (MTS). z factor also indicated that data on plant extracts at 10 µg/well were more reliable compared to those obtained from 100 µg/well. Therefore, only data at $10 \,\mu g$ /well in duplicate were used in the determination of actives. In the preliminary screen, 23 plant extracts were found to show activity (50% or higher level of inhibition over the mean of all samples for a given plate) in either one or both of the duplicates. Of these, seven were reconfirmed to be active on 5HT1a receptor in the hit confirmation. The active plant extracts were isolated from Popowia odoardoi Diels (Annonaceae) (leaf and stem), Artabotrys roseus Boerl. (Annonaceae) (bark), Litsea elliptibacea Merr. (Lauraceae) (bark), Decaspermum fruticosum Forst. (Myrtaceae) (bark), Dyera costulata (Miq.) Hook. f. (Apocynaceae) (leaf), and Irvingia malayana Oliv. (Simaroubaceae) (leaf). However, none of the plant extracts tested were active on either GABA_B or D2S receptors.

Keywords: Central nervous system, dopamine receptor, GABA receptor, Malaysian plants, receptor binding assay, serotonin receptor.

Introduction

Disorders of the central nervous system (CNS) are the cause of a number of common diseases throughout the world, which include migraine, sleeping disorders, obsessive disorders, schizophrenia, Alzheimer disease, epilepsy, and Parkinson disease (Laurence et al., 1997; Lefkowitz et al., 1990). Some of these disorders are related to neurotransmitters such as acetylcholine, glutamic acid, dopamine, 5-hydroxytryptamine, γ -aminobutyric acid, glycine, benzodiazepine, noradrenaline, and histamine, and their receptors (Lefkowitz et al., 1990).

Historically, plants have provided important CNS active compounds including morphine, codeine, reserpine, and caffeine (Cragg et al., 1997; Grabley & Thiericke, 1999; Evans & Evans, 2002). However, the majority of the plants have not been investigated to any great extent for their pharmacological activities, and it is believed that plants can provide new drug leads for the treatment of CNS diseases (Zhu et al., 1996). The recent developments in radioactive ligand-receptor binding assays offer a rapid turnover of the screening process and hence may expedite the process in the search of novel drug molecules or templates (Zhu et al., 1996; Marks et al., 2002). These developments include the miniturization and automation of the screening process (Oldenburg et al., 2001; Menke, 2002). In the current study, we evaluated CNS activities of some Malaysian plants using competitive radioligand receptor binding assays, and the receptor activities assessed were 5-hydroxy tryptamine (5HT), GABA, and dopamine. The aim was to qualitatively identify plants that exhibit significant CNS activities for further bioassay-guided isolation of active constituents.

Accepted: January 13, 2005

Address correspondence to: L.Y. Chung, Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: chungly@hotmil.com, chungly@ummc.edu.my

Materials and Methods

Materials

[³H]-Spiperone, [³H]-CGP 54626, and [³H]-8-OH-DPAT were obtained from Amersham Pharmacia Biotech (Little Chalfont, Buckinghamshire, UK), Tocris (Ellisville, MO, USA), and Perkin Elmer (Boston, MA, USA), respectively. Haloperidol, GABA, and metergoline were purchased from RBI (Natick, MA, USA). Unless stated otherwise, all other reagents of analytical grade were obtained through standard commercial sources.

Deep-well titer plate polypropylene (Beckman Coulter, Fullerton, CA, USA), Multiscreen Harvest plates-GF/C (Millipore, Billerica, MA, USA), TopSeal-A (Packard, Meriden, CT, USA), Bottom Seal (Millipore), and MicroScint-O (Packard) were purchased. SignalScreen membranes from cells expressing dopamine (D2S: co-expressed in sf9 cells with $G\alpha 3\beta 1\gamma 2$; no. 6110138), GABA_B 1a (co-expressed in HEK 293 cells with GABA_B 2; no. 6110557), and 5-HT1a (expressed in CHO cells; no. 6440501) human receptors were supplied by Biosignal (Montreal, Quebec, Canada).

Plant samples and crude extracts dilution

A total of 185 plant samples were collected from Forest Research Institute Malaysia, Kuala Lumpur, Malaysia (voucher no.: 5-digit series) and Tabun Wildlife Reserve, Sabah, Malaysia (voucher no.: 6-digit series). The voucher specimens were kept at the herbaria of Forest Research Institute Malaysia, Kuala Lumpur, Malaysia (5-digit series), and Forest Research Center, Sepilok, Sandakan, Sabah, Malaysia (6-digit series). The plant samples were dried, ground, and macerated (100 g) with sufficient methanol in conical flasks for 7 days with sonication (2×30 min). The methanolic solution was filtered, solvent removed *in vacuo* and freeze-dried, giving a dried residue that was weighed and kept at -20° C in sample vials until use.

DMSO (1.25 ml) was added to 5 mg of crude plant extracts and vortexed vigorously, giving an initial concentration of 4 mg/ml. The extracts were tested at $100 \mu \text{g/assay}$ point and $10 \mu \text{g/assay}$ point.

Receptor binding assays

The receptor binding assays were carried out according to the recommended protocols (Biosignal). Briefly, the membranes were thawed on ice and diluted to 1 SignalScreen Unit per 500 μ l with the appropriate binding buffer (D2S: 50 mM Tris-HCl, pH 7.4, 10 mM MgCl₂, 1 mM EDTA, 120 mM NaCl; GABA_B 1a+2: 50 mM Tris-HCl, pH 7.4, 2.5 mM CaCl₂; 5HT1a: 50 mM Tris-HCl, pH 7.4, 10 mM MgSO₄, 0.5 mM EDTA, 0.1% ascorbic acid). The reference ligands and radioligands were diluted at 22 × the final concentration in 100% DMSO and in binding buffer, respectively (Table 1).

The diluted membranes $(500 \,\mu\text{l})$ were added to each well of the deep-well plate, followed by addition of 25 µl of DMSO (total value, 5 wells), reference compound (nonspecific value, 3 wells) or crude extracts to the corresponding well in the deep-well plate. The reaction was initiated by adding 25 µl of radioligand to each well. Top-Seal-A was applied to the plate, vortexed gently, and incubated at 27°C while shaking for 60 min. During incubation, the Multiscreen Harvest plates were preincubated in 0.3% aqueous polyethyleneimine (D2S), 50 mM Tris pH 7.4 (GABA_B 1a + 2), or 0.3% polyethyleneimine in binding buffer (5HT1a). The reaction mixture was then filtered over the presoaked Multiscreen Harvest plate using a Tomtec Harvester and washed 9-times with 500 µl of cold 50 mM Tris-HCl, pH 7.4, at 4°C and airdried for 30 min at room temperature under a fume hood. A bottom seal was applied to the Multiscreen Harvest plate, 25 µl of MicroScint-O added to each well, and followed by sealing of the top using TopSeal-A. The plate was then counted for 60s per well using TopCount NXT (Packard) with a count delay of 60 s.

Data analysis

Data analysis on saturation experiment using the nonlinear least-squares regression method was performed using PRISM Software (GraphPad Software, Inc., San Diego, CA, USA) and the results are presented as mean \pm SEM. z' factor analysis, originally described by Zhang et al. (1999) to evaluate the quality of the screening assays, was performed on replicate (>150) test wells and NSB wells and the conditions were as described above.

To calculate the percentage of inhibition of specific binding to 5HT, GABA, or dopamine receptors in the presence of the test compounds, a standard data reduction algorithm was used as shown below:

% Inhibition of specific binding =
$$\frac{[T - NSP] - [B - NSP]}{[T - NSP]} \times 100$$

Table 1. Final concentrations of radioligands and reference ligands.

Receptor	Radioligand	Final concentration	Reference ligand	Final concentration
D2S	[³ H]-Spiperone	0.2 nM	Haloperidol	10 μM
GABA _B 1a + 2	[³ H]-CGP 54626	5.1 nM	GABA	10 mM
5HT1a	[³ H]-8-OH-DPAT	0.25 nM	Metergoline	10 μM

Figure 1. (a) Saturation curve for D2S receptors. (b) Saturation curve for $GABA_B \ 1a + 2$ receptors. (c) Saturation curve for 5HTla receptors.

Figure 2. Time course of association of $[{}^{3}H]$ -spiperone to D2S receptors. (b) Time course of association of $[{}^{3}H]$ -CGP 54626 to GABA_B 1a + 2 receptor. (c) Time course of association of $[{}^{3}H]$ -6-OH-DPAT to 5HTla receptors.

Table 2. K_d of radioligands and K_i of competitive ligands.

Receptor	Radioligand	K _d	Reference ligand	K _i
D2S	[³ H]-Spiperone	0.12 nM	Haloperidol	13.6 nM
GABA _B 1a + 2	[³ H]-CGP 54626	6.22 nM	GABA	22.8 nM
5HT1a	[³ H]-6-OH-DPAT	0.3 nM	Metergoline	6.3 nM

Receptor	Total binding	Specific binding	Nonspecific binding
D2S	1155.8 ± 116.1 (10)	1109.3 ± 108.6 (9.8)	46.5 ± 19.8 (42.6)
$GABA_B 1a + 2$	705.0 ± 55.1 (7.8)	$597 \pm 57.5 \ (9.6)$	$108.0 \pm 16.6 \; (15.4)$
5HT1a	980.2 ± 28.6 (2.9)	$925 \pm 50.8 \ (5.5)$	$55.2 \pm 28.3 \ (51.3)$

Table 3. Interplate receptor binding variations.

The values of total binding, specific binding, and nonspecific binding are in cpm and are expressed as mean $(n = 6) \pm SD$. Values in parentheses represent %CV.

where B = binding in the presence of test extract, NSP = nonspecific binding in the presence of excess inhibitor, and T = total binding.

Results and Discussion

The respective binding of [³H]-8-OH-DPAT, [³H]-CGP 54626, and [³H]-spiperone to 5HT1a, GABA_B 1a+2, or D2S receptors were with high affinity and saturable (Fig. 1). The dissociation constants (K_d) were estimated to be 0.12 nM ([³H]-spiperone; D2S), 6.22 nM ([³H]-CGP 54626; GABA_B), and 0.3 nM ([³H]-6-OH-DPAT; 5HT1a) (Table 2). K_i for the respective competitive/ reference ligands were 13.6 nM (haloperidol), 22.8 nM (GABA), and 6.3 nM (metergoline). In the time-course experiments, association of radioligands were completed at about 30 min; this clearly suggests 60 min incubation time was adequate (Fig. 2).

Interplate variations of total binding, specific binding, and nonspecific binding were analyzed from 5 points per microplate of a total of 12 microplates. For total binding and specific binding for each receptor binding assay, the %CV is less than 10, whereas the values were higher for nonspecific binding (Table 3). The results show interplate variation is minimal and acceptable for the purpose of high throughput screening (HTS) and is further supported by the z' factor (see below).

Table 4. S/N and z' factor.

Receptor	Concentration of plant extracts (µg/well)	S/N	z′
D2S	100	27.2	0.76
	10	50.1	0.80
5HT1a	100	21.1	0.71
	10	21.3	0.68
$GABA_B 1a + 2$	100	6.7	0.56
_	10	4.1	0.60

The quality of the assays was tested by performing z'-factor analysis as described by Zhang et al. (1999). Assays with a z' factor between 0.5 and 1.0 are considered to be reliable, robust, and suitable for HTS. In each case, the z' factor determined was more than 0.5 (Table 4), indicating the assays adopted are suitable for HTS purposes (Zhang et al., 1999; Oldenburg et al., 2001).

In the preliminary screening, the plant extracts were tested at 10 and $100 \,\mu g/assay$ point as, under these conditions, the samples remained soluble and proper filtration was achieved. The samples were screened in duplicate at both concentrations for the three receptors and the percent inhibition averaged. The calculated values of z factor at $10 \mu g/well$ were generally larger compared to those of $100 \,\mu g$ /well for the assay procedures; this indicates the screening results of 10 µg/well are more reliable. Furthermore, at 100 µg/well, most of the samples showed a high level of inhibition, thus making the determination of actives difficult. For these reasons, only the data at $10 \,\mu g/\text{well}$ were used in the determination of actives. Actives were determined by choosing any extract that showed 50% or greater inhibition over the mean of all samples for a given plate.

From the preliminary screens, 23 plant extracts were found to show activity (none on D2S, 9 on 5HT1a, and 14 on GABA_B 1a+2) in either one or both of the duplicates (Table 5). All the plant extracts that exhibited activity in only one of the duplicates were found to be false positives. Of those extracts that showed activity in the preliminary screen, seven were reconfirmed to be active (showed 50% or greater inhibition) on 5HT1a receptors in the hit confirmations. The active plants are Popowia odoardoi Diels (Annonaceae), Artabotrys roseus Boerl. (Annonaceae), Litsea elliptibacea Merr. (Lauraceae), Decaspermum fruticosum Forst. (Myrtaceae), Dyera costulata (Miq.) Hook. f. (Apocynaceae), and Irvingia malayana Oliv. (Simaroubaceae) (Table 6). However, none of the plant extracts tested show high receptor binding activity against GABA_B and D2S receptors. The active plants have now been selected for further testing and bioassay-guided fractionation to identify active constituents.

L.Y. Chung et al.

Table 5. Preliminary screening on CNS receptor activities of plant extracts of some Malaysian plant species.

					Receptors		
No. Vouche	Voucher no.	Family	Plant	Part	5HT1a	GABA _B	D2S
1	43264	Alangiaceae	Alangium ebenaceum	Leaf	_	_	_
2	143521		Alangium griffithii	Bark	—	—	+
3	143521			Leaf	_	_	_
4	43303	Anacardiaceae	Bouea macrophylla	Leaf	—	—	_
5	43304		Bouea oppositifolia	Leaf	—	—	_
6	43304			Stem	_	_	_
7	143516		Buchanania insignis	Bark	—	—	_
8	143516			Leaf	_	—	_
9	143523	Annonaceae	Artabotrys roseus	Bark	++	_	+
10	143523			Leaf	—	—	_
11	143506		Neouvaria acuminatiisima	Bark	_	_	_
12	143506			Leaf	_	_	_
13	143509		Orophea corymbosa	Bark	_	-	-
14	143509			Leaf	_	_	+
15	143511		Polyalthia insignis	Bark	_	_	_
16	143511			Leaf	_	_	+
17	143502		Polyalthia longipes	Bark	_	_	_
18	143502			Leaf	_	_	_
19	145376		Polyalthia microtus	Bark	_	_	_
20	145376			Leaf	_	_	_
21	143524		Polyalthia rumphii	Leaf	_	_	_
22	143524			Root	—	—	_
23	145365		Popowia odoardoi	Leaf	++	_	_
24	145365			Stem	++	_	_
25	143507		Xylopia malayana	Bark	_	_	_
26	143507			Leaf	—	—	_
27	43125	Apocynaceae	Dyera costulata	Leaf	++	—	_
28	145362		Kopsia dasyrachis	Leaf	_	_	+
29	145362			Stem	_	_	_
30	43323	Bixaceae	Flacourtia rukam	Fruit	_	_	_
31	43323			Leaf	_	—	_
32	145361	Burseraceae	Canarium denticulatum	Bark	_	—	+
33	145361			Leaf	_	_	_
34	143522		Canarium hirsutum	Bark	_	_	_
35	143522			Fruit	_	_	-
36	143522			Leaf	_	_	—
37	43302		Dacryodes rugosa	Leaf	_	_	-
38	43306		Santiria griffithii	Leaf	_	_	-
39	43127		Santiria laevigata	Leaf	_	_	—
40	43127			Stem	_	—	_
41	43350	Caesalpiniaceae	Peltophorum pterocarpum	Leaf	_	_	_
42	43123	Clusiaceae	Mesua ferrea	Leaf	_	_	—
43	43320	Combretaceae	Terminalia superba	Leaf	_	_	—
44	43344	Coniferae	Dacrydium becarii	Leaf	—	_	-
45	43344			Stem	_	_	—
46	43345		Dacrydium elatum	Leaf	_	_	—
47	43345			Stem	_	—	_
48	143503	Dichapetalaceae	Dichapetalum gelonioides	Bark	_	—	_
49	143503			Leaf	—	—	_
50	43308	Dipterocarpaceae	Anisoptera costata	Leaf	_	_	—
51	43124		Hopea dryobalanoides	Leaf	_	_	—
52	43124			Twigs	_	_	—
53	43112		Neobalanocarpus heimii	Leaf	—	_	—
54	43134		Shorea parvifolia	Leaf	-	_	-

Table 5. Continued.

					Receptors		
No.	Voucher no.	Family	Plant	Part	5HT1a	GABA _B	D2S
55	43134			Stem	_	_	_
56	43324		Upuna borneensis	Leaf	_	-	-
57	43324			Stem	_	_	_
58	143504	Ebenaceae	Diospyros cauliflora	Bark	_	_	_
59	143504			Leaf	_	_	_
60	143519		Diospyros tuberculata	Bark	_	_	_
61	143519			Leaf	_	_	_
62	43273	Elaeocarpaceae	Elaeocarpus petiolaris	Leaf	_	_	_
63	145393	Euphorbiaceae	Borneodendron aenigmaticum	Bark	_	-	-
64	145393			Leaf	_	-	-
65	145400		Mallotus griffithianus	Bark	_	_	_
66	145400			Leaf	_	_	_
67	145371		Mallotus wrayi	Bark	_	_	_
68	145371			Leaf	_	_	_
69	43108		Phyllanthus emblica	Leaf	—	_	_
70	43108			Twigs	—	_	_
71	43338		Phyllanthus pectinata	Leaf	—	_	_
72	43137	Fagaceae	Castanopsis inermis	Leaf	—	_	_
73	145388	Flacourtiaceae	Homalium panayanum	Bark	—	_	_
74	145388			Leaf	—	_	_
75	145398	Guttiferae	Calophyllum blancoi	Bark	—	_	_
76	145377		Calophyllum gracilipes	Bark	_	_	_
77	145377			Leaf	—	_	_
78	145385		Calophyllum nodosum	Bark	_	_	_
79	145385			Leaf	—	_	_
80	133842		Garcinia brianii	Bark	_	_	_
81	133842			Leaf	_	_	_
82	133846		Garcinia cuspidata	Bark	—	_	_
83	142698		Garcinia parvifolia	Leaf	_	_	_
84	145380	Lauraceae	Litsea elliptibacea	Bark	++	-	-
85	145380			Leaf	_	_	_
86	145368		Litsea garciae	Bark	_	-	-
87	43339		Persea americana	Leaf	_	_	_
88	43129	Leguminosae	Milletia atropurpurea	Leaf	_	_	_
89	43138		Sindora echinocalyx	Leaf	_	-	-
90	43138			Twigs	_	-	-
91	43279	Linaceae	Ixonanthes reticulata	Leaf	_	_	_
92	43144	Magnoliaceae	Aromadendron elegans	Leaf	_	-	-
93	43105	Meliaceae	Aglaia korthalsii	Leaf	_	-	-
94	143512		Chisocheton erythrocarpus	Bark	_	_	_
95	143512			Fruit	—	_	_
96	143512			Leaf	+	-	-
97	145367		Chisocheton macranthus	Bark	—	_	_
98	145367			Fruit	—	_	_
99	145367			Leaf	_	_	_
100	143513		Chisocheton pentandrus	Bark	—	-	_
101	143513			Leaf	—	-	_
102	142663		Chisocheton polyandrus	Leaf	_	_	_
103	43104		Sandoricum koetjape	Leaf	—	_	_
104	43104			Twigs	—	—	_
105	43143		Walsura chrysogene	Leaf	_	_	_
106	145378	Menispermaceae	Fibraurea chloroleuca	Bark	—	—	_
107	145378			Fruit	_	_	_

(Continued)

L.Y. Chung et al.

Table 5.	Continued.

					Receptors		
No.	Voucher no.	Family	Plant	Part	5HT1a	GABA _B	D2S
108	145378			Leaf	_	_	_
109	143518	Moraceae	Ficus septica	Leaf	_	_	_
110	145397	Myrtaceae	Decaspermum fruticosum	Bark	++	_	_
111	145397			Leaf	_	_	_
112	145392	Ochnaceae	Gomphia serrata	Bark	_	_	_
113	145392		-	Leaf	_	_	_
114	43111	Olacaceae	Ochanostachys amentacea	Leaf	_	_	_
115	145396	Oleaceae	Chionanthus crispus	Bark	_	_	_
116	145396		1	Leaf	_	_	_
117	43307	Polygalaceae	Xanthophyllum stipitatum	Leaf	_	_	_
118	43329	Rhamnaceae	Maesopsis eminii	Leaf	_	_	_
119	145373		Vantilago dichotoma	Leaf	_	_	_
120	145373			Stem	_	_	_
121	143525	Rhizophoraceae	Carallia borneensis	Bark	_	_	_
122	143525	P I		Leaf	_	_	_
122	43348		Carallia suffruticosa	Leaf	_	_	+
123	43309	Rosaceae	Maranthes corvmbosa	Stem	_	_	_
124	145363	Rubiaceae	Gardenia tubifera	Bark	_	_	_
125	145363	Rublaceae	Guruenia tubijera	Leaf	_	_	_
120	145305		Morinda rigida	Bork	_	_	_
127	145395		Morinaa rigiaa	Last	—	—	_
120	145395			Stom	—	—	_
129	145395			Stem	_	_	_
130	145395			Dort	_	_	_
131	145304		Praravinia suberosa	Bark	_	_	_
132	145364			Lear	_	_	+
133	145382		Psychotria sarmentosa	Bark	_	_	_
134	145382			Lear	_	_	_
135	145384		Timonius flavescens	Bark	—	—	_
136	145384	D		Leaf	—	—	-
137	145366	Rutaceae	Clausena excavata	Bark	—	—	-
138	145366			Leaf	—	—	-
139	145390	~	Melicope subunifoliolata	Bark	_	-	_
140	43325	Sapindaceae	Amesiodendron chinense	Leaf	_	-	—
141	43325			Stem	-	-	—
142	43337		Dimocarpus longan	Leaf	_	-	_
143	43337			Stem	_	-	+
144	43327		Lepisanthes alata	Fruit	_	-	-
145	43327			Stem	_	_	—
146	43106		Nephelium lappaceum	Twigs	_	_	—
147	43310		Nephelium maingayi	Leaf	_	_	—
148	43341		Nephelium rambutanake	Leaf	_	-	—
149	43341			Stem	_	_	_
150	43110		Pometia pinnata	Leaf	_	-	+
151	43110			Twigs	_	_	_
152	143514		Walsura pinnata	Bark	_	_	_
153	143514			Leaf	_	-	_
154	43334	Sapotaceae	Mimusops elengi	Leaf	_	_	_
155	43334			Stem	_	_	_
156	43347		Palaquium maingayi	Leaf	_	_	_
157	43347			Stem	_	_	_
158	143520	Scyphostegiaceae	Scyphostegia borneensis	Bark	_	_	_
159	143520			Leaf	_	_	_
160	43145	Simaroubaceae	Irvingia malayana	Leaf	++	_	_

Tabl	e 5.	Continued.
------	------	------------

						Receptors	
No.	Voucher no.	Family	Plant	Part	5HT1a	GABA _B	D2S
161	133822		Quassia indica	Bark	_	_	_
162	43311	Sterculiaceae	Heritiera simplicifolia	Stem	_	_	_
163	145381		Sterculia stipulata	Bark	_	_	_
164	145381			Leaf	_	_	_
165	145383	Theaceae	Schima wallichii	Bark	_	_	_
166	145383			Leaf	_	_	_
167	43275	Tiliaceae	Pentace triptera	Leaf	_	_	++
168	145391	Ulmaceae	Gironniera subaequaelis	Leaf	_	_	_
169	145375	Urticaceae	Dendrocnide elliptica	Bark	_	_	_
170	145375			Leaf	_	_	_
171	145387		Leucosyke winklerii	Bark	_	_	+
172	145387			Leaf	_	_	_
173	106702	Verbenaceae	Callicarpa erioclona	Bark	_	_	_
174	133849		Callicarpa fulvohirsuta	Bark	_	_	_
175	145389		Callicarpa havilandii	Bark	_	_	_
176	145389			Leaf	_	_	_
177	145374		Callicarpa longifolia	Bark	_	_	_
178	145374			Leaf	_	_	_
179	106701		Callicarpa stapfii	Bark	_	_	_
180	106701			Leaf	_	_	_
181	145386		Stachytarpeta jamaicencis	Stem	_	_	_
182	43322		Vitex pubescens	Leaf	_	_	_
183	145370	Vitaceae	Leea indica	Bark	_	_	_
184	145370			Leaf	_	_	_
185	145379	Zingerberaceae	Alpinia fraseriana	Stem	_	-	_

Each plant extract was tested at $10 \,\mu\text{g/well}$ in duplicate for each receptor type. The result for each data point was expressed in % inhibitory specific binding in the presence of test extract. -: Both data points were below 50% inhibition over the mean of all samples for a given plate, +: One data point above 50% inhibition, whereas the other was below 50% inhibition over the mean of all samples for a given plate, +: Both data points were above 50% inhibition over the mean of all samples for a given plate, +: Both data points were above 50% inhibition over the mean of all samples for a given plate.

Table 6. Hit confirmation on 5HT1a receptor activity of plant extracts of some Malaysian plant species.

No.	Voucher no.	Family	Plant	Part	% Inhibition Mean $(n = 3) \pm SD$
1	143523	Annonaceae	Artabotrys roseus	Bark	72 ± 1
2	145365	Annonaceae	Popowia odoardoi	Leaf	89 ± 1
3	145365	Annonaceae	Popowia odoardoi	Stem	84 ± 2
4	43125	Apocynaceae	Dyera costulata	Leaf	90 ± 1
5	145380	Lauraceae	Litsea elliptibacea	Bark	84 ± 1
6	145397	Myrtaceae	Decaspermum fruticosum	Bark	86 ± 2
7	43145	Simaroubaceae	Irvingia malayana	Leaf	65 ± 1

The active plant extracts were tested at $10 \,\mu\text{g/well}$ in triplicate. The results were expressed as % inhibitory specific binding in the presence of test extract.

Acknowledgment

This project was supported by Biotechnology Directorate, Ministry of Science, Technology and the Environment, Malaysia (IRPA 26-02-06-0127).

References

Cragg GM, Newman DJ, Snader KM (1997): Natural products in drug discovery and development. *J Nat Prod* 60: 52–60.

- Evans WC, Evans D (2002): *Trease & Evan's Pharmacognosy*, 15th ed. London, WB Saunders.
- Grabley S, Thiericke R (1999): The impact of natural products on drug discovery. In: Grabley S, Thiericke R, eds. *Drug Discovery from Nature*. Berlin, Springer-Verlag, pp. 3–37.
- Laurence DR, Bennett PN, Brown MJ (1997): Clinical Pharmacology, 8th ed. London, Churchill Livingstone, pp. 285–372.
- Lefkowitz RJ, Hoffman BB, Taylor P (1990): Neurohumoral transmission: The autonomic and somatic motor nervous systems. In: Gilman AG, Rall TW, Nites AS, Taylor P, eds. *The Pharmacological Basis of Therapeutics*. New York, Pergamon Press, pp. 84–121.
- Marks JS, Burdette DS, Giegel DA (2002): Homogeneous techniques for monitoring receptor-ligand interactions. In: Janzen WP, ed. *High Throughput Screening*.

Methods and Protocols. Totowa, NJ, Humana Press, pp. 51-63.

- Menke KC (2002): Unit automation in high throughput screening. In: Janzen WP, ed. *High Throughput Screening. Methods and Protocols.* Totowa, NJ, Humana Press, pp. 195–212.
- Oldenburg KR, Kariv I, Zhang JH, Chung TDY, Lin S (2001): Assay miniaturization. In: Seethala R, Fernandes PB, eds. *Handbook of Drug Screening*. New York, Marcell Dekker Inc., pp. 525–562.
- Zhang JH, Chung TD, Oldenburg KR (1999): A simple statistical parameter for use in evaluation and validation of high throughput screening assays. *J Biomol Screen* 4: 67–73.
- Zhu M, Bowery NG, Greengrass PM, Phillipson JD (1996): Application of radioligand receptor binding assays in the search for CNS active principles from Chinese medicinal plants. *J Ethnopharmacol* 54: 153–164.