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ABSTRACT   Data from arthroplasty registers are often analyzed 
using survival methods. Several methodological problems exist, 
for example relating to competing events, non-random censoring, 
non-proportional hazards and dependent observations. League 
tables and ranking of specific survival results leds to further meth-
odological difficulties. Most of these problems are, however, well 
known and a number of methods for dealing successfully with the 
problems have been developed. These methods are usually acces-
sible in commercially available statistical software packages. 

The statistical analysis and reporting of data from arthroplasty 
registers can thus be improved. Development of arthroplasty reg-
ister guidelines for statistical analysis could play an important 
role in making these registers even more useful. 

 
Background

The main purpose of arthroplasty registers is to detect failures 
as early as possible in order to provide warning of probable 
causes, such as inferior implants or surgical methods. The 
statistical analysis of joint replacement failure is generally 
performed using survival analysis techniques such as Kaplan-
Meier analysis and Cox regression (Murray et al. 1993). A 
number of other methods, for example incidence density esti-
mation and Poisson modeling, can be used for the same pur-
pose, but in this paper we concentrate on the survival analysis 
techniques to avoid unnecessary complexity. 

Two alternative techniques are available for describing cumu-
lative survival (and failure): the Kaplan-Meier product limit 
method (Kaplan and Meier 1958) and the Cutler-Ederer actu-
arial life table method (Cutler and Ederer 1958). Both are avail-
able in commercial statistics packages such as SAS, STATA, 
and SPSS, and both have advantages and disadvantages. 

In contrast to the Kaplan-Meier method, the Cutler-Ederer 
actuarial life table method is based on a series of fixed time 
intervals, which easily enables production of tables present-
ing the number of observations, events, withdrawals, survival 
estimates, etc. for specific intervals. This facilitates both the 
calculation and the presentation of results, but it has the disad-

vantages that the interval length is subjectively defined and the 
accuracy is slightly lower than with the Kaplan-Meier method. 

Differences in survival are usually hypothesis-tested. Sev-
eral methods have been developed, for example the log-rank 
test, which compares the entire survival experience and—when 
early events are of special interest—the generalized Wilcoxon 
test (Klein et al. 2001a). Several methods for calculation of 
confidence intervals for survival curves have been developed 
(Dorey et al. 1993). 

Regression models are often used to adjust for differences 
in confounding variables, e.g. unbalanced distributions of age 
and sex. The proportional hazards model, also known as the 
Cox model (Klein et al. 2001b), is commonly used for this 
purpose in joint replacement analyses.

Relative to many other areas, however, survival analysis 
of joint replacements is problematic. Long follow-up times 
and low failure rates is one complicating factor, unfulfilled 
assumptions of the methods is a second one, and business 
interests and political ambitions in comparing the results of 
analyses is a third. 

Some of these problems have already been extensively 
discussed in the literature and recommendations presented 
(Murray et al. 1993). In this paper, we aim to briefly describe 
a number of currently discussed methodological issues in sur-
vival analysis that have implications for the analysis of joint 
replacements and for which no general recommendations have 
yet been presented.

Competing risks
The Kaplan-Meier method, the gold standard for estimating 
the survival of joint replacements (with results often presented 
in terms of cumulative revision risk), was developed for study-
ing events that eventually occur in all subjects, i.e. death. 

All patients will die eventually but all joint implants will 
not be revised. During an observation period some patients 
will undergo revision, some will die before revision becomes 
necessary, while others will reach the end of the observation 
period without either implant revision or death. 

In this scenario, revision and death are two competing 
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events, i.e. one event (death) hinders the other (revision) to 
occur. The Kaplan-Meier method is based on the assumption 
that competing events occur independently, e.g. that the risk 
of revision is the same in patients who die before the end of 
follow-up as in those living to the end of follow-up. 

Assume, for example, that 5 patients with 1 hip replace-
ment each are followed until a certain date. Before that date, 3 
patients are revised while the 2 unrevised patients die before 
reaching the end of follow-up. The Kaplan-Meier method 
assumes that competing events do not exist, and that if the 
2 deceased patients had been followed as long as the other 
3 they would also have been revised. While only 60% of the 
patients have actually been revised, the estimated cumulative 
revision risk at end of follow-up is 100%. 

This issue is also important when different implant failure 
endpoints are involved, for example when studying failures 
of different components such as the cup and the stem in hip 
arthroplasty. Here, the two endpoints represent competing 
events. A total revision caused by failure of one component 
excludes the possibility of the other component becoming a 
cause of revision. If the assumption of independence is not 
fulfilled, the results of the Kaplan-Meier method will be 
biased because it estimates the probability of an event occur-
ring in a hypothetical population where competing events do 
not exist. 

To get valid risk estimates, the probability of each compet-
ing event should be estimated. This can be achieved using the 
cumulative incidence estimator (Prentice et al. 1978) instead 
of the Kaplan-Meier method. Regression models, similar 
to the Cox model, for modeling effects of covariates on the 
cumulative incidence function have also been developed by 
Fine and Grey (1999), and by Klein and Andersen (2005). 

It is important, however, to recognize that both approaches—
Kaplan-Meier with Cox models and the cumulative inci-
dence estimator with Fine and Grey or Klein and Andersen 
models—require the withdrawal of patients and events to be 
independent. For arthroplasty survival, this means that the risk 
of a patient dying or becoming lost to follow-up is unrelated to 
the risk of becoming revised. The term informative censoring 
is used to describe a relation between the risks of withdrawal 
and events that may bias the results of the survival analysis 
(Scharfstein and Robins 2002). 

It has been suggested that competing risk situations are 
common in orthopedic research and that the resulting bias 
may be substantial. However, appropriate statistical methods 
are available to address these problems (Biau et al. 2007). 

Proportional hazards
The Cox model is often used when comparing survival esti-
mates for different implant models, patient categories, hos-
pitals, etc. It enables estimation of crude and adjusted rela-
tive risks representative of the entire survival experience. The 
validity of these relative risks relies, however, on the assump-
tion of proportional hazards, i.e. that the relative effects of 

covariates are constant over time (Collet 1994)—e.g. for 2 
types of implants, the proportions of early and late revisions 
are the same, see Figure.

Several ways to check this assumption have been devised, 
one of the most important being based on the test of Schoen-
feld’s partial residuals for a covariate (Schoenfeld 1982). This 
test is incorporated in most statistical software packages that 
include Cox regression.

Non-proportional hazards are probably not uncommon in 
orthopedic research, and several methods such as stratifica-
tion, piecewise Cox modeling, and incorporation of time-
dependent variables have been developed to account for non-
proportionality. However, many published Kaplan-Meier sur-
vival curves, calculated from data that are also analyzed using 
the Cox model, show that not all investigators recognize the 
requirement of proportional hazards. Non-proportional haz-
ards is, for example, indicated by two survival curves crossing 
each other.

It is sometimes argued that a relative risk estimated with 
non-proportional hazards represents the average relative risk 
during follow-up, but this is incorrect. The relative risk is over- 
or underestimated depending on whether the risks increase or 
decrease over time, because there is more information on fail-
ure risk at the beginning of follow-up than at the end. The test-
ing power of the relative risk is also reduced (Schemper 1992). 

A Cox model with weighted estimation providing valid 
average relative risks with non-proportional hazards has been 
developed (Schemper et al. 2009). The advantage of this model 
is that it provides valid results without inclusion of additional 
parameters.

Diagnosing non-proportional hazards and adjusting the 
analysis for this is a vital but often neglected part of perform-
ing a survival analysis with the Cox model. This issue clearly 
needs to be given more attention. 
Bilaterality

Cumulative revision rate of two fictitious prosthesis types characterized 
by non-proportional hazards.
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Another important assumption, on which survival analysis and 
many other statistical methods are based, is that analysis units 
are independent. This assumption is not fulfilled when subjects 
contribute more than one observation each to the statistical 
analysis, for example from bilateral or multilateral implants. 
A patient with 2 implants may, for example, develop infection 
in both after having one episode of sepsis.

In a statistical analysis of independent observations, only 
one source of variation is included: variation between subjects. 
When analyzing bilateral observations, two sources of varia-
tion must be taken into account: variation between subjects 
and variation between implants within subjects. As such an 
analysis includes estimation of both fixed (mean values) and 
random (variance) effects, the analysis technique is known as 
mixed effects analysis.

The Cox model can be used for this purpose by extending 
it to include a subject-specific frailty component, common 
for bilateral observations from the same subject but varying 
between subjects (Hougaard 2000). This frailty component is 
often assumed to be gamma distributed. The model is then 
described as a shared gamma frailty model. 

It has been investigated if the inclusion of bilateral observa-
tions has any effect on the results from survival analyses of 
hip and knee implants (Ripatti and Palmgren 2000, Schwarzer 
et al. 2001, Robertsson and Ranstam 2003, Lie et al. 2004). 
The investigations all suggest that bilaterality has a negligible 
effect on survival estimates. 

Studies on other types of implants, with different endpoints, 
study settings, follow-up times etc. may be less robust against 
dependent observations (e.g. multiple finger arthroplasties or 
when using infection as endpoint). 

A recent systematic review has shown that disregarding 
dependency is common in orthopedic publications (Bryant et 
al. 2006). This speaks for the importance of awareness of the 
problem.

Hospital comparisons
Swedish registries are required to provide information on hos-
pital-specific revision risks as part of open national compari-
sons initiated by governmental authorities. Registers in other 
countries may face similar challenges. Comparison of revision 
risks between hospitals is complicated by several factors. 

First, the characteristics of patients, which are often pre-
sented as a case-mix, vary naturally between hospitals. Ide-
ally, the influence on the revision rates from the case-mix 
should be removed in the statistical analysis, because the aim 
of the comparisons is to focus on hospital achievements that 
can be improved. 

If all factors determining the case-mix were known and mea-
sured, it might be possible to adjust for their differential effects 
using a Cox model. This is not, however, possible in practice as 
not all factors are known or measured. The Cox model is still 
used to adjust for known and measured differences in case-
mix, such as age, sex, and diagnosis, but this adjustment may 

not be perfect, leaving residual confounding effects from dif-
ferences in other patient and treatment factors. 

Secondly, the comparisons are further complicated by low 
failure rates, failures occurring a long time after the primary 
operation, and large variation in the number of operations 
per hospital. The amount of information available for esti-
mation of a hospital-specific revision risk varies substantially 
between hospitals. Hospitals with few primary operations 
have a greater probability of—by chance—showing extremely 
high or low revision risks than hospitals with many primary 
operations. Estimates based on few patients are simply more 
uncertain. 

To take differences in operative volumes into account, the 
above-described frailty model can also be used when com-
paring hospital-specific revision risks. The subject-specific 
frailty component is then replaced by a hospital-specific one. 
The hospital-specific revision risks, estimated by the frailty 
component, take the varying amount of information available 
at the hospitals into account. The resulting risk estimates are 
therefore shrunken as compared to those from a traditional 
Cox model, and that reduces the problem of over-interpreting 
randomly high and low risks caused by differences in opera-
tive volumes (Robertsson et al. 2006). 

Ranking
The government initiative of open comparisons described 
earlier includes publication of tables that are commonly used 
to rank hospitals. This is, however, an uncertain method to 
compare hospital-specific risks. Apart from the problems 
described above related to case-mix and extreme risks, sam-
pling and measurement uncertainty have profound effects on 
the interpretation of ranks. 

Published league tables often include confidence intervals 
for the hospital-specific risks that are ranked, but this provides 
little information on rank uncertainty. However, confidence 
intervals for ranks can also be calculated. The calculation is 
not straightforward; it requires computer simulation. Even so, 
to avoid misleading the reader it is important to inform him 
or her about the reliability of presented ranks (Ranstam et al. 
2008a). The Swedish Knee Arthroplasty Register also rou-
tinely presents this kind of information, see Table.

There are registration errors in most registers, and the 
magnitude of these is often not known in detail. Joint regis-
ters typically define revision by linking of patients’ operation 
records. If mis-registration of an item of information prevents 
a patients’ records from being linked, the revision will not be 
identified but will be treated as a second primary operation. 

The consequence of such registration errors on hospital 
ranks can be formidable. A simulation study using published 
data on hip arthroplasties showed, for example, that hospi-
tal-specific ranking of revision risks was unreliable already 
at 2–3% misclassified revisions (Ranstam et al. 2008b). Fur-
thermore, implant survival is usually the result of surgeries 
performed over many years. Thus, it is not at all certain that 
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the circumstances that caused any observed differences exist 
at the time of publication. 

Clearly, ranking is not a good way to describe hospital 
achievements.

Guidelines for reporting of joint survival
In summary, survival analysis has been used extensively for 
reporting of joint register data. A number of methodologi-
cal problems have been identified, while theoretical devel-
opments have brought forward methods to deal successfully 
with many of them. These new methods have also become 
accessible in a number of commercially available statistical 
software packages. 

Joint registries were initiated to gain knowledge on the out-
come of joint arthroplasty and how it was affected by factors 
related to the patients, implants, and surgical methods. While 
providing important information that can be used as a basis 
for improvement, their findings have also had a pronounced 
effect on providers of individual implants and lately also on 
hospitals. The high profile of their findings may partly explain 
the reluctance of the registries to adopt new methods; instead, 
the retain ones that are widely used by others and that are 
accepted in the orthopedic literature. 

Improvement of statistical analysis and reporting of data is 
a matter of communicating information and altering practice, 
however. We believe that the development of common joint 
register guidelines could play an important role by enabling 
coordination of the choice of modern statistical methods, 
selections, endpoints, and mode of reporting. This would 
make the joint registers even more useful. 

International joint replacement registry associations may be 
the right forum for such an initiative.

JR provided information on statistical problems and OR provided insights 
into joint register problems. Both wrote the manuscript. 
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