73
Views
0
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Determination of Thallium in Tea with Preconcentration by Microwave-Assisted Synthesized Molybdenum Disulfide Nanoparticles and Flame Atomic Absorption Spectrometry (FAAS) Analysis

, &
Pages 1715-1726 | Received 10 Aug 2023, Accepted 29 Sep 2023, Published online: 11 Oct 2023

References

  • Abdelnasir, S., M. R. Mungroo, J. Chew, R. Siddiqui, N. A. Khan, I. Ahmad, S. Shahabuddin, and A. Anwar. 2023. Applications of polyaniline-based molybdenum disulfide nanoparticles against brain-eating amoebae. ACS Omega 8 (9):8237–47. doi:10.1021/acsomega.2c06050.
  • Antón, M. A. L., D. A. Spears, M. D. Somoano, and M. R. M. Tarazona. 2013. Thallium in coal: Analysis and environmental implications. Fuel 105:13–8. doi:10.1016/j.fuel.2012.08.004.
  • Babaei, Z. T., A. Larki, and K. Ghanemi. 2022. Application of molybdenum disulfide nanosheets adsorbent for simultaneous preconcentration and determination of Cd(II), Pb(II), Zn(II) and Ni(II) in water samples. Journal of the Iranian Chemical Society 19 (1):95–107. doi:10.1007/s13738-021-02289-7.
  • Chai, W., H. Wang, Y. Zhang, and G. Ding. 2016. Preparation of polydopamine-coated magnetic nanoparticles for dispersive solid-phase extraction of water-soluble synthetic colorants in beverage samples with HPLC analysis. Talanta 149:13–20. doi:10.1016/j.talanta.2015.11.026.
  • Chen, J., and K. C. Teo. 2001. Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta 450 (1-2):215–22. doi:10.1016/S0003-2670(01)01367-8.
  • Chen, S., J. Yan, J. Li, Y. Zhang, and D. Lu. 2017. Solid phase extraction with titanium dioxide nanofibers combined with dispersive liquid-liquid microextraction for speciation of thallium prior to electrothermal vaporization ICP-MS. Microchimica Acta 184 (8):2797–803. doi:10.1007/s00604-017-2309-x.
  • Fazelirad, H., and M. A. Taher. 2013. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS. Talanta 103:375–83. doi:10.1016/j.talanta.2012.10.082.
  • Fırat, M., S. Bodur, B. Tışlı, C. Özlü, D. S. Chormey, F. Turak, and S. Bakırdere. 2018. Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry. Environmental Monitoring and Assessment 190 (7):393. doi:10.1007/s10661-018-6786-0.
  • Firouzabadi, Z. D., A. M. H. Shabani, S. Dadfarnia, and M. H. Ehrampoush. 2017. Preconcentration and speciation of thallium by ferrofluid based dispersive solid phase extraction and flame atomic absorption spectrometry. Microchemical Journal 130:428–35. doi:10.1016/j.microc.2016.10.025.
  • Hasanpoor, M., M. Aliofkhazraei, and H. Delavari. 2015. Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science 11:320–5. doi:10.1016/j.mspro.2015.11.101.
  • Jabłońska-Czapla, M. 2015. Arsenic, antimony, chromium, and thallium speciation in water and sediment samples with the LC-ICP-MS technique. International Journal of Analytical Chemistry 2015:171478. doi:10.1155/2015/171478.
  • Korrani, Z. S., E. Khalili, H. Kamyab, W. A. W. Ibrahim, and H. Hashim. 2023. A new solid phase extraction sorbent developed based on cyanopropyl functionalized silica nanoparticles for organophosphorus pesticides determination. Environmental Research 117167:117167. doi:10.1016/j.envres.2023.117167.
  • Lejbini, M. B., and P. Sangpour. 2019. Hydrothermal synthesis of α-Fe2O3-decorated MoS2 nanosheets with enhanced photocatalytic activity. Optik 177:112–7. doi:10.1016/j.ijleo.2018.09.019.
  • Li, L., C. Liu, R. Ma, Y. Yu, Z. Chang, X. Zhang, C. Yang, D. Chen, Y. Yu, W. Li, et al. 2021. Rapid removal of thallium from water by a new magnetic nano-composite using graphene oxide for efficient separation. International Biodeterioration & Biodegradation 161:105245. doi:10.1016/j.ibiod.2021.105245.
  • Li, Q., E. C. Walter, W. E. van der Veer, B. J. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner. 2005. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. The Journal of Physical Chemistry. B 109 (8):3169–1 12. doi:10.1021/jp045032d.
  • Li, T., and G. Galli. 2007. Electronic properties of MoS2 nanoparticles. The Journal of Physical Chemistry C 111 (44):16192–6. doi:10.1021/jp075424v.
  • Li, W. J., E. W. Shi, J. M. Ko, Z. Z. Chen, H. Ogino, and T. Fukuda. 2003. Hydrothermal synthesis of MoS2 nanowires. Journal of Crystal Growth 250 (3-4):418–22. doi:10.1016/S0022-0248(02)02412-0.
  • Ma, W., J. Li, X. Li, and H. Liu. 2022. Enrichment of diamide insecticides from environmental water samples using metal-organic frameworks as adsorbents for determination by liquid chromatography tandem mass spectrometry. Journal of Hazardous Materials 422:126839. doi:10.1016/j.jhazmat.2021.126839.
  • Motshekga, S. C., S. K. Pillai, S. S. Ray, K. Jalama, and R. W. Krause. 2012. Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. Journal of Nanomaterials 2012:1–15. doi:10.1155/2012/691503.
  • Mourdikoudis, S., and L. M. Liz-Marzán. 2013. Oleylamine in nanoparticle synthesis. Chemistry of Materials 25 (9):1465–76. doi:10.1021/cm4000476.
  • Nagarajan, T., M. Khalid, N. Sridewi, P. Jagadish, and R. Walvekar. 2022. Microwave synthesis of molybdenum disulfide nanoparticles using response surface methodology for tribological application. Nanomaterials 12 (19):3369. doi:10.21203/rs.3.rs-1548749/v1.
  • Nguyen, T. V., T. P. Nguyen, Q. V. Le, D. V. Dao, S. H. Ahn, and S. Y. Kim. 2023. Synthesis of very small molybdenum disulfide nanoflowers for hydrogen evolution reaction. Applied Surface Science 607:154979. doi:10.1016/j.apsusc.2022.154979.
  • Qureshi, N., R. Patil, M. Shinde, G. Umarji, V. Causin, W. Gade, U. Mulik, A. Bhalerao, and D. P. Amalnerkar. 2015. Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route. Applied Nanoscience 5 (3):331–41. doi:10.1007/s13204-014-0322-5.
  • Ren, X., H. Feng, M. Zhao, X. Zhou, X. Zhu, X. Ouyang, J. Tang, C. Li, J. Wang, W. Tang, et al. 2023. Recent advances in thallium removal from water environment by metal oxide material. International Journal of Environmental Research and Public Health 20 (5):3829. doi:10.3390/ijerph20053829.
  • Saxena, M., A. K. Sharma, A. K. Srivastava, N. Singh, and A. R. Dixit. 2023. An ınvestigation for minimizing the wear loss of microwave-assisted synthesized g-C3N4/MoS2 nanocomposite coated substrate. Coatings 13 (1):118. doi:10.3390/coatings13010118.
  • Shi, K., X. Tu, Y. Hu, and X. Zhang. 2023. Determination of thallium in biological and environmental samples. Applied Spectroscopy Reviews. doi:10.1080/05704928.2023.2205920.
  • Shirani, M., F. Salari, S. Habibollahi, and A. Akbari. 2020. Needle hub in-syringe solid phase extraction based a novel functionalized biopolyamide for simultaneous green separation/preconcentration and determination of cobalt, nickel, and chromium (III) in food and environmental samples with micro sampling flame atomic absorption spectrometry. Microchemical Journal 152:104340. doi:10.1016/j.microc.2019.104340.
  • Sun, K., J. C. White, E. He, C. A. Van Gestel, and H. Qiu. 2023. Surface defects regulate the in vivo bioenergetic response of earthworm eisenia fetida coelomocytes to molybdenum disulfide nanosheets. ACS Nano 17 (3):2639–52. doi:10.1021/acsnano.2c10623.
  • Tabatabaee, M., M. R. Shishehbore, H. Bagheri, and Z. Ebrahimifard. 2010. Thallium determination using catalytic redox reaction between methylene blue and ascorbic acid. International Journal of Environmental Science & Technology 7 (4):801–6. doi:10.1007/BF03326189.
  • Tao, H., T. Wu, M. Aldeghi, T. C. Wu, A. Aspuru-Guzik, and E. Kumacheva. 2021. Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials 6 (8):701–16. doi:10.1038/s41578-021-00337-5.
  • Tışlı, B., T. U. Gösterişli, B. T. Zaman, E. G. Bakırdere, and S. Bakırdere. 2021. Determination of manganese in coffee and wastewater using deep eutectic solvent based extraction and flame atomic absorption spectrometry. Analytical Letters 54 (6):979–89. doi:10.1080/00032719.2020.1789871.
  • Tontini, G., G. D. L. Semione, C. Bernardi, R. Binder, J. D. B. de Mello, and V. Drago. 2016. Synthesis of nanostructured flower-like MoS2 and its friction properties as additive in lubricating oils. Industrial Lubrication and Tribology 68 (6):658–64. doi:10.1108/ILT-12-2015-0194.
  • Veeramalai, C. P., F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim. 2016. Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method. Applied Surface Science 389:1017–22. doi:10.1016/j.apsusc.2016.08.031.
  • Vollath, D., and D. V. Szabo. 1998. Synthesis of nanocrystalline MoS and WS in a microwave plasma. Materials Letters 35 (3-4):236–44. doi:10.1016/S0167-577X(97)00247-4.
  • Yang, P., J. Zhao, D. Gong, and X. Jia. 2023. Zwitterionic ammonium-sulfonato grafted cellulose for efficient thallium removal and adsorption mechanism study. International Journal of Biological Macromolecules 227:1059–69. doi:10.1016/j.ijbiomac.2022.11.282.
  • Yang, Q., and J. S. Verbeke. 1991. Effectiveness of palladium matrix modification for the determination of thallium by graphite furnace atomic absorption spectrometry. Clinica Chimica Acta 204 (1-3):23–35. doi:10.1016/0009-8981(91)90213-V.
  • Zhan, J. H., Z. D. Zhang, X. F. Qian, C. Wang, Y. Xie, and Y. T. Qian. 1998. Solvothermal synthesis of nanocrystalline MoS2 from MoO3 and elemental sulfur. Journal of Solid State Chemistry 141 (1):270–3. doi:10.1006/jssc.1998.7991.
  • Zhang, J., R. Yang, Y. C. Li, Y. Peng, X. Wen, and X. Ni. 2020. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicology and Environmental Safety 195:110475. doi:10.1016/j.ecoenv.2020.110475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.