81
Views
0
CrossRef citations to date
0
Altmetric
Clinical Analysis

Optical Determination of Tryptophan Using Persistent Luminescence Nanoparticles (PLNPs)

& ORCID Icon
Pages 1753-1764 | Received 26 Aug 2023, Accepted 10 Oct 2023, Published online: 20 Oct 2023

References

  • Ai, T., W. T. Shang, H. Yan, C. T. Zeng, K. Wang, Y. Gao, T. P. Guan, C. H. Fang, and J. Tian. 2018. Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery. Biomaterials 167:216–25. doi: 10.1016/j.biomaterials.2018.01.031.
  • Alizadeh, T., and S. Amjadi. 2017. A tryptophan assay based on the glassy carbon electrode modified with a nano-sized tryptophan-imprinted polymer and multi-walled carbon nanotubes. New Journal of Chemistry 41 (11):4493–502. doi: 10.1039/C6NJ04108F.
  • Bista, M., K. Kowalska, W. Janczyk, A. Dömling, and T. A. Holak. 2009. Robust NMR screening for lead compounds using tryptophan-containing proteins. Journal of the American Chemical Society 131 (22):7500–1. doi: 10.1021/ja901863h.
  • Capuron, L., S. Schroecksnadel, C. Féart, A. Aubert, D. Higueret, P. Barberger-Gateau, S. Layé, and D. Fuchs. 2011. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biological Psychiatry 70 (2):175–82. doi: 10.1016/j.biopsych.2010.12.006.
  • Diem, S., J. Bergmann, and M. Herderich. 2000. Tryptophan-N-glucoside in fruits and fruit juices. Journal of Agricultural and Food Chemistry 48 (10):4913–7. doi: 10.1021/jf0003146.
  • Forteschi, M., S. Sotgia, S. Assaretti, D. Arru, D. Cambedda, E. Sotgiu, A. Zinellu, and C. Carru. 2015. Simultaneous determination of aromatic amino acids in human blood plasma by capillary electrophoresis with UV-absorption detection. Journal of Separation Science 38 (10):1794–9. doi: 10.1002/jssc.201500038.
  • Goswami, D., J. N. Thakker, and P. C. Dhandhukia. 2015. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from L-tryptophan (Trp) using HPTLC. Journal of Microbiological Methods 110:7–14. doi: 10.1016/j.mimet.2015.01.001.
  • Liang, L., N. Chen, Y. Y. Jia, Q. Q. Ma, J. Wang, Q. Yuan, and W. H. Tan. 2019. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Research 12 (6):1279–92. doi: 10.1007/s12274-019-2343-6.
  • Li, N., W. Diao, Y. Y. Han, W. Pan, T. T. Zhang, and B. Tang. 2014. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chemistry (Weinheim an der Bergstrasse, Germany) 20 (50):16488–91. doi: 10.1002/chem.201404625.
  • Lima, D., C. A. Pessôa, K. Wohnrath, L. H. Marcolino-Junior, and M. F. Bergamini. 2022. A feasible and efficient voltammetric sensor based on electropolymerized L-arginine for the detection of L-tryptophan in dietary supplements. Microchemical Journal 181:107709. doi: 10.1016/j.microc.2022.107709.
  • Lin, Q. S., Z. H. Li, C. H. Ji, and Q. Yuan. 2020. Electronic structure engineering and biomedical applications of low energy-excited persistent luminescence nanoparticles. Nanoscale Advances 2 (4):1380–94. doi: 10.1039/C9NA00817A.
  • Liu, X., L. Q. Luo, Y. P. Ding, Z. P. Kang, and D. X. Ye. 2012. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry 86:38–45. doi: 10.1016/j.bioelechem.2012.01.008.
  • Li, Z. J., Y. W. Zhang, X. Wu, L. Huang, D. S. Li, W. Fan, and G. Han. 2015. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence. Journal of the American Chemical Society 137 (16):5304–7. doi: 10.1021/jacs.5b00872.
  • Ma, Y. X., M. C. Zhu, Y. Zhang, E. J. Gao, and S. Y. Wu. 2022. A multiemissive lanthanide metal-organic framework for selective detection of L-tryptophan. Inorganica Chimica Acta 537:120928. doi: 10.1016/j.ica.2022.120928.
  • Mackay, G. M., C. M. Forrest, N. Stoy, J. Christofides, M. Egerton, T. W. Stone, and L. G. Darlington. 2006. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. European Journal of Neurology 13 (1):30–42. doi: 10.1111/j.1468-1331.2006.01220.x.
  • Maldiney, T., A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, et al. 2014. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nature Materials 13 (4):418–26. doi: 10.1038/nmat3908.
  • Malviya, N., C. Sonkar, R. Ganguly, and S. Mukhopadhyay. 2019. Cobalt metallogel interface for selectively sensing l-tryptophan among essential amino acids. Inorganic Chemistry 58 (11):7324–34. doi: 10.1021/acs.inorgchem.9b00455.
  • Prabakaran, K., P. J. Jandas, J. T. Luo, C. Fu, and Q. P. Wei. 2021. Molecularly imprinted poly(methacrylic acid) based QCM biosensor for selective determination of L-tryptophan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 611:125859. doi: 10.1016/j.colsurfa.2020.125859.
  • Remko, M., D. Fitz, R. Broer, and B. M. Rode. 2011. Effect of metal ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms. Journal of Molecular Modeling 17 (12):3117–28. doi: 10.1007/s00894-011-1000-0.
  • Sa-nguanprang, S., A. Phuruangrat, and O. Bunkoed. 2022. An optosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 264:120324. doi: 10.1016/j.saa.2021.120324.
  • Sathya, V., V. Srinivasadesikan, M. C. Lin, and V. Padmini. 2023. Highly sensitive and selective detection of tryptophan by antipyrine based fluorimetric sensor. Journal of Molecular Structure 1272:134241. doi: 10.1016/j.molstruc.2022.134241.
  • Savitz, J. 2020. The kynurenine pathway: A finger in every pie. Molecular Psychiatry 25 (1):131–47. doi: 10.1038/s41380-019-0414-4.
  • Sun, X., L. Song, N. Liu, J. P. Shi, and Y. Zhang. 2021. Chromium-doped zinc gallate near-infrared persistent luminescence nanoparticles in autofluorescence-free biosensing and bioimaging: A review. ACS Applied Nano Materials 4 (7):6497–514. doi: 10.1021/acsanm.1c01115.
  • Sun, S. K., H. F. Wang, and X. P. Yan. 2018. Engineering persistent luminescence nanoparticles for biological applications: From biosensing/bioimaging to theranostics. Accounts of Chemical Research 51 (5):1131–43. doi: 10.1021/acs.accounts.7b00619.
  • Wang, J., Q. Q. Ma, Y. Q. Wang, H. J. Shen, and Q. Yuan. 2017. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 9 (19):6204–18. doi: 10.1039/c7nr01488k.
  • Wang, B. B., X. Zhao, L. J. Chen, C. Yang, and X. P. Yan. 2021. Functionalized persistent luminescence nanoparticle-based aptasensor for autofluorescence-free determination of kanamycin in food samples. Analytical Chemistry 93 (4):2589–95. doi: 10.1021/acs.analchem.0c04648.
  • Xu, J. S., P. Begley, S. J. Church, S. Patassini, K. A. Hollywood, M. Jüllig, M. A. Curtis, H. J. Waldvogel, R. L. M. Faull, R. D. Unwin, et al. 2016. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochimica et Biophysica Acta 1862 (6):1084–92. doi: 10.1016/j.bbadis.2016.03.001.
  • Zhang, R. Y., R. Jamal, Y. Ge, W. L. Zhang, Z. N. Yu, Y. Q. Yan, Y. C. Liu, and T. Abdiryim. 2020. Functionalized PProDOT@nitrogen-doped carbon hollow spheres composites for electrochemical sensing of tryptophan. Carbon 161:842–55. doi: 10.1016/j.carbon.2020.02.016.
  • Zhang, Y., G. I. N. Waterhouse, Z. P. Xiang, J. Che, C. Chen, and W. Z. Sun. 2020. A highly sensitive electrochemical sensor containing nitrogen-doped ordered mesoporous carbon (NOMC) for voltammetric determination of L-tryptophan. Food Chemistry 326:126976. doi: 10.1016/j.foodchem.2020.126976.
  • Zhang, X., N. Y. Xu, Q. Ruan, D. Q. Lu, Y. H. Yang, and R. Hu. 2018. A label-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2,4,6-trinitrophenol. RSC Advances 8 (11):5714–20. doi: 10.1039/c7ra12222e.
  • Zhao, X., L. J. Chen, K. C. Zhao, Y. S. Liu, J. L. Liu, and X. P. Yan. 2019. Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. TrAC Trends in Analytical Chemistry 118:65–72. doi: 10.1016/j.trac.2019.05.025.
  • Zhao, G. J., T. Y. Hu, J. Li, H. Wei, H. Shang, and Y. F. Guan. 2015. A novel strategy to analyze l-tryptophan through allosteric Trp repressor based on rolling circle amplification. Biosensors & Bioelectronics 71:103–7. doi: 10.1016/j.bios.2015.04.017.
  • Zhou, Z. H., W. Zheng, J. T. Kong, Y. Liu, P. Huang, S. Y. Zhou, Z. Chen, J. L. Shi, and X. Y. Chen. 2017. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 9 (20):6846–53. doi: 10.1039/c7nr01209h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.