111
Views
0
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Determination of Rutin on a Gold Microsphere—Taro Stalk Porous Carbon Modified Carbon Ionic Liquid Electrode (CILE)

, , , , , & show all
Pages 1765-1777 | Received 27 Jun 2023, Accepted 13 Oct 2023, Published online: 26 Oct 2023

References

  • Abuelnoor, N., A. AlHajaj, M. Khaleel, L. F. Vega, and M. R. M. Abu-Zahra. 2021. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere 282:131111. doi: 10.1016/j.chemosphere.2021.131111.
  • Aman, E. U. M., M. F. Islam, T. A. Chowdhury, M. S. Alam, M. Elias, M. N. Uddin, A. J. Samed, and M. A. Hasnat. 2020. An electrochemical analysis of acute contamination of environmental water and restoring of water quality using taro carbon. Applied Water Science 10 (6):148. doi:10.1007/s13201-020-01227-x.
  • Arvand, M., A. Shabani, and M. S. Ardaki. 2017. A new electrochemical sensing platform based on binary composite of graphene oxide-chitosan for sensitive rutin determination. Food Analytical Methods 10 (7):2332–45. doi:10.1007/s12161-017-0794-5.
  • Asaduddin, A. H., U. N. Maulani, A. Y. Sari, K. Hawari, and A. A. Ayusari. 2021. Taro ice cream: Addition of Colocasia esculenta stem to improve antioxidant activity in ice cream. IOP Conference Series: Materials Science and Engineering 1143 (1):012038. doi:10.1088/1757-899X/1143/1/012038.
  • Bi, Z., Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, and C.-M. Chen. 2019. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. Journal of Materials Chemistry A 7 (27):16028–45. doi:10.1039/C9TA04436A.
  • Cai, Z., S. Chen, X. Ma, D. Na, J. Zhao, T. Wu, and C. Zhang. 2021. Preparation and use of tyrosine-capped copper nanoclusters as fluorescent probe to determine rutin. Journal of Photochemistry and Photobiology A: Chemistry 405:112918. doi:10.1016/j.jphotochem.2020.112918.
  • Cheng, H., J. Liu, Y. Sun, T. Zhou, Q. Yang, S. Zhang, X. Zhang, G. Li, and W. Sun. 2020b. A fungus-derived biomass porous carbon–MnO2 nanocomposite-modified electrode for the voltammetric determination of rutin. RSC Advances 10 (69):42340–8. doi:10.1039/D0RA05739H.
  • Cheng, H., W. Weng, H. Xie, J. Liu, G. Luo, S. Huang, W. Sun, and G. Li. 2020a. Au-pt@biomass porous carbon composite modified electrode for sensitive electrochemical detection of baicalein. Microchemical Journal 154:104602. doi:10.1016/j.microc.2020.104602.
  • Chen, X., Z. Wang, F. Zhang, L. Zhu, Y. Li, and Y. Xia. 2010b. Determination of rutin on the poly (p-aminobenzene sulfonic acid) modified glassy carbon electrode. Chemical & Pharmaceutical Bulletin 58 (4):475–8. doi:10.1248/cpb.58.475.
  • Chen, J., M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia. 2010a. Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications. Advanced Functional Materials 20 (21):3684–94. doi:10.1002/adfm.201001329.
  • Chen, M., D. Yu, X. Zheng, and X. Dong. 2019. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. Journal of Energy Storage 21:105–12. doi:10.1016/j.est.2018.11.017.
  • Goyal, J., and K. P. Verma. 2023. An overview of biosynthetic pathway and therapeutic potential of rutin. Mini Reviews in Medicinal Chemistry 23 (14):1451–60. doi:10.2174/1389557523666230125104101.
  • Jiang, Y., J. Chen, Q. Zeng, Z. Zou, J. Li, L. Zeng, W. Sun, and C. -M. Li. 2022b. Facile method to produce sub-1 nm pore-rich carbon from biomass wastes for high performance supercapacitors. Journal of Colloid and Interface Science 612:213–22. doi:10.1016/j.jcis.2021.12.144.
  • Jiang, M., L. Zhu, Z. Zhang, Y. Ai, L. Zeng*, S. He, L. Li, and W. Sun*. 2022a. Electrochemical determination of rutin on ZIF-8-derived porous carbon and aminated graphene nanocomposite modified electrode. International Journal of Electrochemical Science 17 (10):221051. doi:10.20964/2022.10.61.
  • Jjagwe, J., P. W. Olupot, E. Menya, and H. M. Kalibbala. 2021. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. Journal of Bioresources and Bioproducts 6 (4):292–322. doi:10.1016/j.jobab.2021.03.003.
  • Kumar, P., R. Khosla, M. Soni, D. Deva, and S. K. Sharma. 2017. A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from taro leaf as template. Sensors and Actuators B: Chemical 246:477–86. doi:10.1016/j.snb.2017.01.202.
  • Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101 (1):19–28. doi:10.1016/S0022-0728(79)80075-3.
  • Li, X., R. Zou, Y. Niu, W. Sun, T. Shao, and X. Chen. 2018. Gold nanocage-based electrochemical sensing platform for sensitive detection of luteolin. Sensors (Basel, Switzerland) 18 (7):2309. doi:10.3390/s18072309.
  • Liu, J., X. Li, W. Weng, H. Xie, G. Luo, Y. Niu, S. Zhang, G. Li, and W. Sun. 2019. A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin. Mikrochimica Acta 186 (12):783. doi:10.1007/s00604-019-3953-0.
  • Lu, Y., D. He, H. Lei, J. Hu, H. Huang, and H. Ren. 2018. Adsorption of Cu (II) and Ni (II) from aqueous solutions by taro stalks chemically modified with diethylenetriamine. Environmental Science and Pollution Research International 25 (18):17425–33. doi:10.1007/s11356-018-1932-3.
  • Mahmood, F., Y. Sun, and C. Wan. 2021. Biomass-derived porous graphene for electrochemical sensing of dopamine. RSC Advances 11 (25):15410–5. doi:10.1039/D1RA00735A.
  • Mazzucchelli, I., M. Rapetti, C. Fattore, V. Franco, G. Gatti, and E. Perucca. 2011. Development and validation of an HPLC–UV detection assay for the determination of rufinamide in human plasma and saliva. Analytical and Bioanalytical Chemistry 401 (3):1013–21. doi:10.1007/s00216-011-5126-9.
  • Miao, D., J. Li, R. Yang, J. Qu, L. Qu, and P. d B. Harrington. 2014. Supersensitive electrochemical sensor for the fast determination of rutin in pharmaceuticals and biological samples based on poly (diallyldimethylammonium chloride)-functionalized graphene. Journal of Electroanalytical Chemistry 732:17–24. doi:10.1016/j.jelechem.2014.08.018.
  • Mitharwal, S., A. Kumar, K. Chauhan, and N. K. Taneja. 2022. Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta l.) leaves: A review. Food Chemistry 383:132406. doi:10.1016/j.foodchem.2022.132406.
  • Mukherjee, S., and G. Halder. 2016. Assessment of fluoride uptake performance of raw biomass and activated biochar of Colocasia esculenta stem: Optimization through response surface methodology. Environmental Progress & Sustainable Energy 35 (5):1305–16. doi:10.1002/ep.12346.
  • Niu, Y., J. Liu, W. Chen, C. Yin, W. Weng, X. Li, X. Wang, G. Li, and W. Sun. 2018. A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotriangle modified electrode and electrocatalysis. Analytical Methods 10 (44):5297–304. doi:10.1039/C8AY01980K.
  • Oliveira, A. C. d, and L. H. Mascaro. 2011. Characterization of carbon nanotubes paste electrode and its application as rutin sensor. Current Analytical Chemistry 7 (2):101–9. doi:10.2174/157341111794815002.
  • Pandey, J., T. Bastola, J. Tripathi, M. Tripathi, R. K. Rokaya, B. Dhakal, R. D. C, R. Bhandari, and A. Poudel. 2020. Estimation of total quercetin and rutin content in malus domestica of Nepalese origin by HPLC method and determination of their antioxidative activity. Journal of Food Quality 2020:1–13. doi:10.1155/2020/8853426.
  • Peng, J., Q. Huang, Y. Liu, P. Liu, and C. Zhang. 2019. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sensors and Actuators B: Chemical 294:157–65. doi:10.1016/j.snb.2019.05.047.
  • Peng, J., Q. Huang, W. Zhuge, Y. Liu, C. Zhang, W. Yang, and G. Xiang. 2018. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosensors & Bioelectronics 106:212–8. doi:10.1016/j.bios.2018.02.009.
  • Qiao, X.-D., Y. Li, Y.-Y. Liu, G.-L. Huang, B.-X. Lei, W. Sun, and Z.-F. Sun. 2016. Sonochemical preparation of mesoporous titania submicrospheres for efficient dye-sensitized solar cells. Advanced Powder Technology 27 (4):1806–13. doi:10.1016/j.apt.2016.06.013.
  • Qiu, B., C. Yang, Q. Shao, Y. Liu, and H. Chu. 2022. Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review. Fuel 315:123218. doi:10.1016/j.fuel.2022.123218.
  • Ranjith, K. S., A. T. E. Vilian, S. M. Ghoreishian, R. Umapathi, Y. S. Huh, and Y.-K. Han. 2021. An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D-1D MXene-FeWO4 nanocomposite. Sensors and Actuators B: Chemical 344:130202. doi:10.1016/j.snb.2021.130202.
  • Rashidinejad, A., G. B. Jameson, and H. Singh. 2022. The effect of pH and sodium caseinate on the aqueous solubility, stability, and crystallinity of rutin towards concentrated colloidally stable particles for the incorporation into functional foods. Molecules (Basel, Switzerland) 27 (2):534. doi:10.3390/molecules27020534.
  • Shi, F.,Y. Ai,B. Wang,Y. Yao,Z. Zhang,J. Zhou,X. Wang, andW. Sun. 2022. Portable wireless intelligent electrochemical sensor for the ultrasensitive detection of rutin using functionalized black phosphorene nanocomposite. Molecules 27 (19):6603. doi:10.3390/molecules27196603.
  • Takahashi, S., H. Muguruma, N. Osakabe, H. Inoue, and T. Ohsawa. 2020. Selective detection of rutin in the presence of ascorbic acid with a carbon nanotube electrode. Japanese Journal of Applied Physics 59 (SD):SDDD02. doi:10.7567/1347-4065/ab4ee4.
  • Tan, H., Y. Zhao, X. Xu, Y. Sun, Y. Li, and J. Du. 2019. A covalent triazine framework as an oxidase mimetic in the luminol chemiluminescence system: Application to the determination of the antioxidant rutin. Mikrochimica Acta 187 (1):42. doi:10.1007/s00604-019-4058-5.
  • Wan, D., Y. Han, F. Li, H. Mao, and G. Chen. 2019. Far infrared-assisted removal of extraction solvent for capillary electrophoretic determination of the bioactive constituents in plumula nelumbinis. Electrophoresis 40 (4):582–6. doi:10.1002/elps.201800477.
  • Wang, C., Q. Wang, M. Zhong, and X. Kan. 2016. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection. The Analyst 141 (20):5792–8. doi:10.1039/C6AN01294A.
  • Wang, Y., B. Zhang, Y. Tang, F. Zhao, and B. Zeng. 2021. Fabrication and application of a rutin electrochemical sensor based on rose-like AuNPs-MoS2-GN composite and molecularly imprinted chitosan. Microchemical Journal 168:106505. doi:10.1016/j.microc.2021.106505.
  • Xing, R., H. Yang, S. Li, J. Yang, X. Zhao, Q. Wang, S. Liu, and X. Liu. 2017. A sensitive and reliable rutin electrochemical sensor based on palladium phthalocyanine-MWCNTs-Nafion nanocomposite. Journal of Solid State Electrochemistry 21 (5):1219–28. doi:10.1007/s10008-016-3447-5.
  • Yan, L., T. Hu, X. Li, F. Ding, B. Wang, B. Wang, B. Zhang, F. Shi, and W. Sun. 2022. Graphdiyne and ionic liquid composite modified gold electrode for sensitive voltammetric analysis of rutin. Electroanalysis 34 (2):286–93. doi:10.1002/elan.202100258.
  • Yang, S., G. Li, G. Wang, J. Zhao, Z. Qiao, and L. Qu. 2015. Decoration of chemically reduced graphene oxide modified carbon paste electrode with yttrium hexacyanoferrate nanoparticles for nanomolar detection of rutin. Sensors and Actuators B: Chemical 206:126–32. doi:10.1016/j.snb.2014.09.027.
  • Yang, S., L. Qu, G. Li, R. Yang, and C. Liu. 2010. Gold nanoparticles/ethylenediamine/carbon nanotube modified glassy carbon electrode as the voltammetric sensor for selective determination of rutin in the presence of ascorbic acid. Journal of Electroanalytical Chemistry 645 (2):115–22. doi:10.1016/j.jelechem.2010.04.019.
  • Ye, L. Q., Y. Zheng, L. L. Yan, and Y. T. Gao. 2013. Electrochemical behavior and determination of rutin at inlaid multi-wall carbon nanotubes modified graphite electrode and reline ionic liquids. Advanced Materials Research 785-786:527–32. doi:10.4028/www.scientific.net/AMR.785-786.527.
  • Zhang, Y., C. Wu, S. Dai, L. Liu, H. Zhang, W. Shen, W. Sun, and C. -M. Li. 2022. Rationally tuning ratio of micro- to meso-pores of biomass-derived ultrathin carbon sheets toward supercapacitors with high energy and high power density. Journal of Colloid and Interface Science 606 (Pt 1):817–25. doi:10.1016/j.jcis.2021.08.042.
  • Zhang, C., L. Zhou, and J. Peng. 2021. Blue-light photoelectrochemical aptasensor for kanamycin based on synergistic strategy by Schottky junction and sensitization. Sensors and Actuators B: Chemical 340:129898. doi:10.1016/j.snb.2021.129898.
  • Zhao, J. J.,Y. Qian, andS. M. Du. 2016. [Gas chromatography for measurement of chlorpyrifos in serum]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases 34 (2):138–9. doi:10.3760/cma.j.issn.1001-9391.2016.02.016.
  • Zhu, Z., X. Sun, X. Zhuang, Y. Zeng, W. Sun, and X. Huang. 2010. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin. Thin Solid Films.519 (2):928–33. doi:10.1016/j.tsf.2010.09.013.
  • Ziyatdinova, G., I. Aytuganova, A. Nizamova, M. Morozov, and H. K. Budnikov. 2011. Cyclic voltammetry of natural flavonoids on MWNT-modified electrode and their determination in pharmaceuticals. Collection of Czechoslovak Chemical Communications 76 (12):1619–31. doi:10.1135/cccc2011115.
  • Zou, R., L. Zhu, L. Yan, B. Shao, H. Cheng, and W. Sun. 2021. Co3O4 anchored on meshy biomass carbon derived from kelp for high‐performance ultracapacitor electrode. Materials Chemistry and Physics 266:124556. doi:10.1016/j.matchemphys.2021.124556.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.