58
Views
3
CrossRef citations to date
0
Altmetric
Review articles

Is schizophrenia the price of human central nervous system complexity?

Pages 13-24 | Received 19 Sep 2008, Published online: 06 Jul 2009

References

  • Crow TJ. Auditory hallucinations as primary disorders of syntax: an evolutionary theory of the origins of language. Cognit Neuropsychiatry 2004; 9: 125–145
  • Khaitovich P, Lockstone HE, Wayland MT, et al. Metabolic changes in schizophrenia and human brain evolution. Genome Biol 2008; 9: R124
  • Sherwood CC, Raghanti MA, Wenstrup JJ. Is humanlike cytoarchitectural asymmetry present in another species with complex social vocalization? A stereologic analysis of mustached bat auditory cortex. Brain Res 2005; 1045: 164–174
  • Parker GJ, Luzzi S, Alexander DC, Wheeler-Kingshott CA, Ciccarelli O, Lambon Ralph MA. Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 2005; 24: 656–666
  • Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF. Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 2001; 57: 349–358
  • Newberg AB, Wintering NA, Morgan D, Waldman MR. The measurement of regional cerebral blood flow during glossolalia: a preliminary SPECT study. Psychiatry Res 2006; 148: 67–71
  • Weinberger DR. Schizophrenia and the frontal lobe. Trends Neurosci 1988; 11: 367–370
  • Sommer IE, Ramsey NF, Mandl RC, van Oel CJ, Kahn RS. Language activation in monozygotic twins discordant for schizophrenia. Br J Psychiatry 2004; 184: 128–135
  • Hart BL, Hart LA, Pinter-Wollman N. Large brains and cognition: where do elephants fit in?. Neurosci Biobehav Rev 2008; 32: 86–98
  • Kaas JH. The evolution of the complex sensory and motor systems of the human brain. Brain Res Bull 2008; 75: 384–390
  • Allman J, Hakeem A, Watson K. Two phylogenetic specializations in the human brain. Neuroscientist 2002; 8: 335–346
  • Lepage M, Ghaffar O, Nyberg L, Tulving E. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci USA 2000; 97: 506–511
  • Rogers RD, Owen AM, Middleton HC, et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 1999; 19: 9029–9038
  • Greene JD, Sommerville RB, Nystrom LE, Darley JM, Cohen JD. An fMRI investigation of emotional engagement in moral judgment. Science 2001; 293: 2105–2108
  • Ranganath C, Minzenberg MJ, Ragland JD. The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol Psychiatry 2008; 64: 18–25
  • Heerey EA, Bell-Warren KR, Gold JM. Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biol Psychiatry 2008; 64: 62–69
  • Kishimoto H, Kuwahara H, Ohno S, et al. Three subtypes of chronic schizophrenia identified using 11C-glucose positron emission tomography. Psychiatry Res 1987; 21: 285–292
  • Mitelman SA, Brickman AM, Shihabuddin L, et al. A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia. Neuroimage 2007; 37: 449–462
  • Koechlin E, Hyafil A. Anterior prefrontal function and the limits of human decision-making. Science 2007; 318: 594–598
  • Young JP, Forsberg LE. Simulating activations with cytoarchitecture. Anat Embryol (Berl) 2005; 210: 407–410
  • Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 2006; 7: 268–277
  • Matsuzawa T. Comparative cognitive development. Dev Sci 2007; 10: 97–103
  • Egan LC, Santos LR, Bloom P. The origins of cognitive dissonance: evidence from children and monkeys. Psychol Sci 2007; 18: 978–983
  • Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007; 12: 232–246
  • Hayashi M, Ito M, Shimizu K. The spindle neurons are present in the cingulate cortex of chimpanzee fetus. Neurosci Lett 2001; 309: 97–100
  • Hof PR, Nimchinsky EA, Perl DP, Erwin JM. An unusual population of pyramidal neurons in the anterior cingulate cortex of hominids contains the calcium-binding protein calretinin. Neurosci Lett 2001; 307: 139–142
  • Fornito A, Yucel M, Dean B, Wood SJ, Pantelis C. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 2008; [ Epub ahead of print].
  • Huttenlocher PR. Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Res 1979; 163: 195–205
  • Chechik G, Meilijson I, Ruppin E. Synaptic pruning in development: a computational account. Neural Comput 1998; 10: 1759–1777
  • Bourgeois JP, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 1994; 4: 78–96
  • Hafner H, an der Heiden W. Epidemiology of schizophrenia. Can J Psychiatry 1997; 42: 139–151
  • Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?. J Psychiatr Res 1982; 17: 319–334
  • Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003; 26: 523–530
  • Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006; 29: 547–553
  • Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 2006; 7: 194–206
  • Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 2007; 13: 54–63
  • Ransom B, Behar T, Nedergaard M. New roles for astrocytes (stars at last). Trends Neurosci 2003; 26: 520–522
  • Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. A human-specific gene in microglia. Science 2005; 309: 1693
  • Angata T, Varki NM, Varki A. A second uniquely human mutation affecting sialic acid biology. J Biol Chem 2001; 276: 40282–40287
  • Yang YF, Qin W, Shugart YY, et al. Possible association of the MAG locus with schizophrenia in a Chinese Han cohort of family trios. Schizophr Res 2005; 75: 11–19
  • Hill RS, Walsh CA. Molecular insights into human brain evolution. Nature 2005; 437: 64–67
  • Whiten A, Goodall J, McGrew WC, et al. Cultures in chimpanzees. Nature 1999; 399: 682–685
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291: 1304–1351
  • McPherson JD, Marra M, Hillier L, et al. A physical map of the human genome. Nature 2001; 409: 934–941
  • Mikkelsen TS, Hillier LW, Eichler EE, et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005; 437: 69–87
  • Hughes JF, Skaletsky H, Pyntikova T, et al. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 2005; 437: 100–103
  • Dean B, Opeskin K, Pavey G, Hill C, Keks N. Changes in protein kinase C and adenylate cyclase in the temporal lobe from subjects with schizophrenia. J Neural Transm 1997; 104: 1371–1381
  • Dean B. Signal transmission, rather than reception, is the underlying neurochemical abnormality in schizophrenia. Aust N Z J Psychiatry 2000; 34: 560–569
  • Scarr E, Pavey G, Robinson PJ, Opeskin K, Copolov DL, Dean B. Decreased phorbol ester binding in the parahippocampal gyrus from subjects with schizophrenia is not associated with changes in protein kinase C. Mol Psychiatry 2002; 7: 683–688
  • Dean B, Laws SM, Hone E, et al. Increased levels of apolipoprotein E in the frontal cortex of subjects with schizophrenia. Biol Psychiatry 2003; 54: 616–622
  • Tsuang M. Schizophrenia: genes and environment. Biol Psychiatry 2000; 47: 210–220
  • Thomas EA, Dean B, Pavey G, Sutcliffe JG. Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci USA 2001; 98: 4066–4071
  • Kaiya H. Second messenger imbalance hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 1992; 46: 33–38
  • Mirnics K, Middleton FA, Lewis DA, Levitt P. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486
  • Malhotra AK, Pinals DA, Adler CM, et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997; 17: 141–150
  • Brewer WJ, Edwards J, Anderson V, Robinson T, Pantelis C. Neuropsychological, olfactory, and hygiene deficits in men with negative symptom schizophrenia. Biol Psychiatry 1996; 40: 1021–1031
  • Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 2006; 81: 47–63
  • Cheng Z, Ventura M, She X, et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 2005; 437: 88–93
  • Maher BS, Riley BP, Kendler KS. Psychiatric genetics gets a boost. Nat Genet 2008; 40: 1042–1044
  • Harris RA, Rogers J, Milosaljevic A. Human-specific changes of genome structure detected by genomic triangulation. Science 2007; 316: 235–237
  • Fraser HB, Khaitovich P, Plotkin JB, Paabo S, Eisen MB. Aging and gene expression in the primate brain. PloS Biol 2005; 3: e274
  • Dean B, Keriakous D, Scarr E, Thomas EA. Gene expression profiling in Brodmann's area 46 from subjects with schizophrenia. Aust N Z J Psychiatry 2007; 41: 308–320
  • Narayan S, Tang B, Head SR et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 2008; [ Epub ahead of print].
  • Gur RE, Petty RG, Turetsky BI, Gur RC. Schizophrenia throughout life: sex differences in severity and profile of symptoms. Schizophr Res 1996; 21: 1–12
  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93–103
  • Berezikov E, Thuemmler F, van Laake LW, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38: 1375–1377
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol 2004; 2: e363
  • Beveridge NJ, Tooney PA, Carroll AP, et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 2008; 17: 1156–1168
  • Burmistrova OA, Goltsov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev EI. MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Mosc) 2007; 72: 578–582
  • Perkins DO, Jeffries CD, Jarskog LF, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007; 8: R27
  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63
  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64–71
  • Enard W, Khaitovich P, Klose J, et al. Intra- and interspecific variation in primate gene expression patterns. Science 2002; 296: 340–343
  • Caceres M, Lachuer J, Zapala MA, et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 2003; 100: 13 030–13035
  • Dean B, Keriakous D, Thomas EA, Scarr E. Understanding the pathology of schizophrenia: the impact of high-throughput screening of the genome and proteome in postmortem CNS. Curr Psychiatr Rev 2005; 1: 1–9
  • Novak G, Seeman P, Tallerico T. Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synapse 2006; 59: 61–68
  • Xing G, Russell S, Hough C, et al. Decreased prefrontal CaMKII alpha mRNA in bipolar illness. Neuroreport 2002; 13: 501–505
  • Pantelidou M, Zographos SE, Lederer CW, Kyriakides T, Pfaffl MW, Santama N. Differential expression of molecular motors in the motor cortex of sporadic ALS. Neurobiol Dis 2007; 26: 577–589
  • Munch C, Sedlmeier R, Meyer T, et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 2004; 63: 724–726
  • Whitelaw NC, Whitelaw E. How lifetimes shape epigenotype within and across generations. Hum Mol Genet 2006; 15 Spec No 2: R131–R137
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6: 597–610
  • Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604–10609
  • Enard W, Fassbender A, Model F, Adorjan P, Paabo S, Olek A. Differences in DNA methylation patterns between humans and chimpanzees. Curr Biol 2004; 14: R148–R149
  • Hazen TC, Stahl DA. Using the stress response to monitor process control: pathways to more effective bioremediation. Curr Opin Biotechnol 2006; 17: 285–290
  • Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8: 355–367
  • Abdolmaleky HM, Cheng KH, Russo A, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 134B: 60–66
  • Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82: 696–711
  • Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS ONE 2007; 2: e809
  • Zhang AP, Yu J, Liu JX, et al. The DNA methylation profile within the 5′-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res 2007; 90: 97–103
  • Grayson DR, Jia X, Chen Y, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 9341–9346
  • Owen R. On the characteristics, principles of division, and primary groups of the class mammalia. J Proc Linnean Soc 1858; 2: 1–37
  • Zeesman S, Nowaczyk MJ, Teshima I, et al. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. Am J Med Genet A 2006; 140: 509–514
  • Feuk L, Kalervo A, Lipsanen-Nyman M, et al. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet 2006; 79: 965–972
  • Sanjuan J, Tolosa A, Gonzalez JC, et al. Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatr Genet 2006; 16: 67–72
  • Fatemi SH, Reutiman TJ, Folsom TD, et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 2008; 99: 56–70
  • Miller JE, Spiteri E, Condro MC, Dosumu-Johnson RT, Geschwind DH, White SA. Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol 2008; 100: 2015–2025
  • Lim JH, Lee JI, Suh YH, Kim W, Song JH, Jung MH. Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia 2006; 49: 1924–1936
  • Toone BK, Okocha CI, Sivakumar K, Syed GM. Changes in regional cerebral blood flow due to cognitive activation among patients with schizophrenia. Br J Psychiatry 2000; 177: 222–228
  • Andreasen NC, O'Leary DS, Flaum M, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 1997; 349: 1730–1734
  • Glantz LA, Lewis DA. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54: 660–669
  • Hill JJ, Hashimoto T, Lewis DA. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2006; 11: 557–566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.