231
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Active Control of Fuel Position in Opposed-Flow Strand Burner Experiments

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1267-1284 | Received 16 May 2022, Accepted 16 Aug 2022, Published online: 30 Aug 2022

References

  • Bergthorson, J. M., K. Sone, T. W. Mattner, P. E. Dimotakis, D. G. Goodwin, and D. I. Meiron. 2005. Impinging laminar jets at moderate Reynolds numbers and separation distances. Phys. Rev. E Stat. Nonlin. Soft Matter Phys 72 (6):066307. doi:10.1103/PhysRevE.72.066307.
  • Connell, T. L., R. A. Yetter, G. A. Risha, Z. J. Huba, A. Epshteyn, and B. T. Fisher. 2019. Enhancement of solid fuel combustion in a hybrid rocket motor using amorphous Ti–Al–B nanopowder additives. J. Propuls. Power 35 (3):662. doi:10.2514/1.B37330.
  • Edwards, T., D. P. Weaver, R. Adams, S. Hulsizer, and D. H. Campbell. 1985. High‐pressure combustor for the spectroscopic study of solid propellant combustion chemistry. Rev. Sci. Instrum 56 (11):2131. doi:10.1063/1.1138382.
  • Field, R. 1993. Observations of surface structure and regression behavior of solid propellant strands burning under narrow gap conditions. Thesis.
  • Ganesh, K., S. Sundarrajan, K. Kishore, K. N. Ninan, B. George, and M. Surianarayanan. 2000. Primary pyrolysis products of hydroxy-terminated polybutadiene. Macromolecules 33 (2):326. doi:10.1021/ma990423p.
  • Geipel, C. M., B. T. Bojko, C. J. Pfützner, B. T. Fisher, and R. F. Johnson. Forthcoming. Regression of solid polymer fuel strands in opposed-flow combustion with gaseous oxidizer. Proc. Combust. Inst.
  • Hashim, S. A., S. Karmakar, and A. Roy. 2019. Combustion characteristics of boron-HTPB-based solid fuels for hybrid gas generator in ducted rocket applications. Combust. Sci. Technol 191 (11):2082. doi:10.1080/00102202.2018.1544973.
  • Hedman, T. D. 2016. Radiation-Induced pyrolysis of solid fuels for ramjet application. Propuls. Power Res 5 (2):87. doi:10.1016/j.jppr.2016.04.002.
  • Heller, C. A., and A. S. Gordon. 1955. Structure of the gas phase combustion region of a solid double base propellant. J. Phys. Chem 59 (8):773. doi:10.1021/j150530a019.
  • Krishnan, S., and P. George. 1998. Solid fuel ramjet combustor design. Prog. Aerosp. Sci 34 (3–4):219. doi:10.1016/S0376-0421(98)00005-0.
  • Lawrence, A. R., J. M. Laktas, G. J. Place, P. A. Jelliss, S. W. Buckner, and T. R. Sippel. 2019. Organically-Capped, nanoscale alkali metal hydride and aluminum particles as solid propellant additives. J. Propuls. Power 35 (4):736. doi:10.2514/1.B37409.
  • Leisch, S., and D. W. Netzer. 1996. Solid fuel ramjets. In Tactical missile propulsion, ed. G. E. Jensen D. W. Netzer, pp. 469–96. Chap 13, Reston, Virginia: American Institute of Aeronautics and Astronautics.
  • Nardozzo, P. K., T. L. ConnellsJr., E. Boyer, R. Yetter, and G. Young. 2020. Diffusion flame studies of solid fuels with nitrous oxide. Int. J. Energ. Mater. Chem. Propuls 19:73.
  • Picard, J. P., C. J. Anderson, R. D. Grosso, and E. Bryant. 1964. Apparatus for determining combustion rate of solid propellants. Ind. Eng. Chem 56 (1):49. doi:10.1021/ie50649a009.
  • Rekers, R. G., and D. S. Villars. 1954. Flame zone spectroscopy of solid propellants. Rev. Sci. Instrum 25 (5):424. doi:10.1063/1.1771092.
  • Sandall, E. T., J. Kalman, J. N. Quigley, S. Munro, and T. D. Hedman. 2017. A study of solid ramjet fuel containing boron–magnesium mixtures. Propuls. Power Res 6 (4):243. doi:10.1016/j.jppr.2017.11.004.
  • Shark, S. C., C. R. Zaseck, T. L. Pourpoint, and S. F. Son. 2014. Solid-Fuel regression rates and flame characteristics in an opposed flow burner. J. Propuls. Power 30 (6):1675. doi:10.2514/1.B35249.
  • Sung, C. J., J. B. Liu, and C. K. Law. 1995. Structural response of counterflow diffusion flames to strain-rate variations. Combust. Flame 102 (4):481. doi:10.1016/0010-2180(95)00041-4.
  • Sutton, G. P., and O. Biblarz. 2016. Rocket propulsion elements. 9th ed. Hoboken, New Jersey: Wiley.
  • Tsuji, H. 1982. Counterflow diffusion flames. Prog. Energy Combust. Sci 8 (2):93. doi:10.1016/0360-1285(82)90015-6.
  • Turner, M. 2009. Rocket and spacecraft propulsion. Berlin: Springer.
  • Young, G., G. A. Risha, A. G. Miller, R. A. Glass, J. T. L. Connell, and R. A. Yetter. 2010. Combustion of alane-based solid fuels. Int. J. Energ. Mater. Chem. Propuls 9:249.
  • Young, G., C. Roberts, and S. Dunham. 2013. Combustion behavior of solid oxidizer/gaseous fuel diffusion flames. J. Propuls. Power 29 (2):362. doi:10.2514/1.B34568.
  • Zaseck, C., S. Shark, S. Son, and T. Pourpoint. 2012. Paraffin fuel and additive combustion in an opposed flow burner configuration. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Atlanta, Georgia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.