130
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect Mechanisms of Sodium on NO Heterogeneous Reduction by Nitrogen-Containing Char: Experimental and DFT Investigation

, , , , &
Pages 1285-1310 | Received 26 May 2022, Accepted 16 Aug 2022, Published online: 23 Aug 2022

References

  • Aarna, I., and E. M. Suuberg 1997. A review of the kinetics of the nitric oxide-carbon reaction. Fuel 76 (6):475–91. doi:10.1016/S0016-2361(96)00212-8.
  • Aarna, I., and E. M. Suuberg 1999. The role of carbon monoxide in the NO− carbon reaction. Energy Fuels 13 (6):1145–53. doi:10.1021/ef9900278.
  • Bai, Y., P. Lv, F. Li, X. Song, W. Su, and G. Yu 2019. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam. Energy Convers. Manage. 184:172–79. doi:10.1016/j.enconman.2019.01.063.
  • Chambrion, P., T. Kyotani, and A. Tomita 1998. Role of N-containing surface species on NO reduction by carbon. Energy Fuels 12 (2):416–21. doi:10.1021/ef970182r.
  • Chambrion, P., T. Suzuki, Z. G. Zhang, T. Kyotani, and A. Tomita 1997. XPS of nitrogen-containing functional groups formed during the C− NO reaction. Energy Fuels. 11(3):681–85. doi:10.1021/ef960109l.
  • Chen, P., M. Gu, X. Chen, and J. Chen 2019a. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char. Fuel 236:1213–25. doi:10.1016/j.fuel.2018.09.094.
  • Chen, P., M. Gu, G. Chen, X. Huang, and Y. Lin 2020. The effect of metal calcium on nitrogen migration and transformation during coal pyrolysis: Mass spectrometry experiments and quantum chemical calculations. Fuel 264:116814. doi:10.1016/j.fuel.2019.116814.
  • Chen, P., M. Gu, G. Chen, F. Liu, and Y. Lin 2019b. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char. Fuel 254:115666. doi:10.1016/j.fuel.2019.115666.
  • Chen, P., M. Gu, D. Wang, J. Wang, X. Huang, H. Wang, and Y. Lin 2021a. Experimental and density functional theory study of the influence mechanism of oxygen on NO heterogeneous reduction in deep air-staged combustion. Combust Flame 223:127–41. doi:10.1016/j.combustflame.2020.09.036.
  • Chen, Y. F., S. Su, C. X. Zhang, Z. H. Wang, Y. X. Xie, H. Zhang, and J. Xiang 2021b. Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere. Fuel 302:121105. doi:10.1016/j.fuel.2021.121105.
  • Chen, N., and R. T. Yang 1998. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry. Carbon 36 (7–8):1061–70. doi:10.1016/S0008-6223(98)00078-5.
  • DeGroot, W. F., T. H. Osterheld, and G. N. Richards 1991. Chemisorption of oxygen and of nitric oxide on cellulosic chars. Carbon 29 (2):185–95. doi:10.1016/0008-6223(91)90069-U.
  • Erme, K., and I. Jõgi 2019. Metal oxides as catalysts and adsorbents in ozone oxidation of NOx. Environ Sci Technol 53 (9):5266–71. doi:10.1021/acs.est.8b07307.
  • Fan, W., Y. Li, Q. Guo, C. Chen, and Y. Wang 2017. Coal-Nitrogen release and NOx evolution in the oxidant-staged combustion of coal. Energy 125:417–26. doi:10.1016/j.energy.2017.02.130.
  • Frisch, M. J., G. W. Trucks, and H. B. Schlegel 2016. Gaussian Inc 16, revision A 03.
  • Gao, Z., W. Yang, X. Ding, Y. Ding, and W. Yan 2017. Theoretical research on heterogeneous reduction of N2O by char. Appl. Therm. Eng. 126:28–36. doi:10.1016/j.applthermaleng.2017.07.166.
  • Girit, Ç. O., J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, and A. Zettl 2009. Graphene at the edge: Stability and dynamics. Science 323 (5922):1705–08. doi:10.1126/science.1166999.
  • Goerigk, L., A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, and S. Grimme 2017. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19 (48):32184–215. doi:10.1039/c7cp04913g.
  • Gonzalez, C., and H. B. Schlegel 1990. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94 (14):5523–27. doi:10.1021/j100377a021.
  • Gupta, H., and L. S. Fan 2003. Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen. Ind. Eng. Chem. Res. 42 (12):2536–43. doi:10.1021/ie020693n.
  • Hayhurst, A. N., and A. D. Lawrence 1997. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed. Combust. Flame 110 (3):351–65. doi:10.1016/S0010-2180(97)00085-0.
  • He, Q., J. Yu, X. Song, L. Ding, J. Wei, and G. Yu 2020. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components. Energy 192:116642. doi:10.1016/j.energy.2019.116642.
  • Holtmeyer, M. L., B. M. Kumfer, and R. L. Axelbaum 2012. Effects of biomass particle size during cofiring under air-fired and oxyfuel conditions. Appl. Energy 93:606–13. doi:10.1016/j.apenergy.2011.11.042.
  • Hou, X. S., H. Zhang, S. Yang, J. Lu, and G. Yue 2008. N2O decomposition over the circulating ashes from coal-fired CFB boilers. Chem. Eng. J. 140 (1–3):43–51. doi:10.1016/j.cej.2007.08.033.
  • Humphrey, W., A. Dalke, and K. Schulten 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1):33–38. doi:10.1016/0263-7855(96)00018-5.
  • Illan-Gomez, M. J., A. Linares-Solano, L. R. Radovic, and C. Salinas-Martinez de Lecea 1995. NO reduction by activated carbons. 2. Catalytic effect of potassium. Energy Fuels 9 (1):97–103. doi:10.1021/ef00049a015.
  • Jalbout, A. F., and S. Fernandez 2002. Part II. Gaussian, complete basis set and density functional theory stability evaluation of the singlet states of Cn (n = 1–6): Energy differences, HOMO–LUMO band gaps, and aromaticity. J. Mol. Struct.: Theochem. 584 (1–3):169–82. doi:10.1016/S0166-1280(02)00003-9.
  • Jiao, A., X. Jiang, J. Liu, Y. Ma, and H. Zhang 2020. Density functional theory investigation on the catalytic reduction of NO by CO on the char surface: The effect of iron. Environ. Sci. Technol. 54 (4):2422–28. doi:10.1021/acs.est.9b07081.
  • Johnson, E. R., S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang 2010. Revealing noncovalent interactions. J. Am. Chem. Soc. 132 (18):6498–506. doi:10.1021/ja100936w.
  • Kim, J. H., J. I. Oh, K. Baek, Y. K. Park, M. Zhang, J. Lee, and E. E. Kwon 2019. Thermolysis of crude oil sludge using CO2 as reactive gas medium. Energy Convers. Manage. 186:393–400. doi:10.1016/j.enconman.2019.02.070.
  • Kozuch, S., and S. Shaik 2011. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44 (2):101–10. doi:10.1021/ar1000956.
  • Kyotani, T., and A. Tomita 1999. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory. J. Phys. Chem. B 103 (17):3434–41. doi:10.1021/jp9845928.
  • Li, Y. H., G. Q. Lu, and V. Rudolph 1998. The kinetics of NO and N2O reduction over coal chars in fluidised-bed combustion. Chem Eng Sci 53 (1):1–26. doi:10.1016/S0009-2509(97)87569-0.
  • Liu, J., S. Gao, X. Jiang, J. Shen, and H. Zhang 2014. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere. Energy Convers. Manage. 77:349–55. doi:10.1016/j.enconman.2013.09.048.
  • Liu, L., J. Jin, Y. Lin, F. Hou, and S. Li 2016. The effect of calcium on nitric oxide heterogeneous adsorption on carbon: A first-principles study. Energy 106:212–20. doi:10.1016/j.energy.2016.02.148.
  • López, D., and J. Calo 2007. The NO-carbon reaction: The influence of potassium and CO on reactivity and populations of oxygen surface complexes [J]. Energy Fuels 21 (4):1872–77. doi:10.1021/ef070034t.
  • Lu, T., and F. Chen 2012. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33 (5):580–92. doi:10.1002/jcc.22885.
  • Lu, P., J. Hao, W. Yu, X. Zhu, and X. Dai 2016. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning. Fuel 170:60–66. doi:10.1016/j.fuel.2015.12.037.
  • Mayer, I. 1983. Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97 (3):270–74. doi:10.1016/0009-2614(83)80005-0.
  • Merrick, J. P., D. Moran, and L. Radom 2007. An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111 (45):11683–700. doi:10.1021/jp073974n.
  • Murdoch, J. R. 1981. What is the rate-limiting step of a multistep reaction? J. Chem. Educ. 58 (1):32. doi:10.1021/ed058p32.
  • Niu, Y., X. Liu, S. Wang, and C. R. Shaddix 2017. A numerical investigation of the effect of flue gas recirculation on the evolution of ultra-fine ash particles during pulverized coal char combustion. Combust Flame 184:1–10. doi:10.1016/j.combustflame.2017.05.029.
  • Oyarzún, A. M., L. R. Radovic, and T. Kyotani 2015. An update on the mechanism of the graphene–no reaction. Carbon 86:58–68. doi:10.1016/j.carbon.2015.01.020.
  • Pels, J. R., F. L. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas 1995. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33 (11):1641–53. doi:10.1016/0008-6223(95)00154-6.
  • Perring, A. E., S. E. Pusede, and R. C. Cohen 2013. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev. 113 (8):5848–70. doi:10.1021/cr300520x.
  • Pevida, C., A. Arenillas, F. Rubiera, and J. J. Pis 2007. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms. Fuel 86 (1–2):41–49. doi:10.1016/j.fuel.2006.07.002.
  • Phiri, Z., R. C. Everson, H. W. Neomagus, and B. J. Wood 2018. Transformation of nitrogen functional forms and the accompanying chemical-structural properties emanating from pyrolysis of bituminous coals. Appl. Energy 216:414–27. doi:10.1016/j.apenergy.2018.02.107.
  • Qie, Z., F. Sun, Z. Zhang, X. Pi, Z. Qu, J. Gao, and G. Zhao 2020. A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/so2/no. Chem. Eng. J. 389:124262. doi:10.1016/j.cej.2020.124262.
  • Raj, A., Z. Zainuddin, M. Sander, and M. Kraft 2011. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust. Carbon 49 (5):1516–31. doi:10.1016/j.carbon.2010.12.005.
  • Roy, S., M. S. Hegde, and G. Madras 2009. Catalysis for NOx abatement. Appl. Energy 86 (11):2283–97. doi:10.1016/j.apenergy.2009.03.022.
  • Sander, M., A. Raj, O. Inderwildi, M. Kraft, S. Kureti, and H. Bockhorn 2009. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines. Carbon 47 (3):866–75. doi:10.1016/j.carbon.2008.11.043.
  • Sathe, C., J. I. Hayashi, C. Z. Li, and T. Chiba 2003. Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressures. Fuel. 82 (12):1491–97. doi:10.1016/S0016-2361(03)00070-X.
  • Shen, J., J. Liu, H. Zhang, and X. Jiang 2013. Nox emission characteristics of superfine pulverized anthracite coal in air-staged combustion. Energy Convers. Manage. 74:454–61. doi:10.1016/j.enconman.2013.06.048.
  • Shu, Y., H. Wang, J. Zhu, G. Tian, J. Huang, and F. Zhang 2015. An experimental study of heterogeneous NO reduction by biomass reburning. Fuel Process Technol 132:111–17. doi:10.1016/j.fuproc.2014.12.039.
  • Suenaga, K., and M. Koshino 2010. Atom-by-atom spectroscopy at graphene edge. Nature 468 (7327):1088–90. doi:10.1038/nature09664.
  • Sun, S., H. Cao, H. Chen, X. Wang, J. Qian, and T. Wall 2011. Experimental study of influence of temperature on fuel-N conversion and recycle NO reduction in oxyfuel combustion. Proc Combust Inst 33 (2):1731–38. doi:10.1016/j.proci.2010.06.014.
  • Tang, H., J. Xu, Z. Dai, L. Zhang, Y. Sun, W. Liu, and J. Xiang 2017. Functional mechanism of inorganic sodium on the structure and reactivity of Zhundong chars during pyrolysis. Energy Fuels 31 (10):10812–21. doi:10.1021/acs.energyfuels.7b02253.
  • Teng, H., and E. M. Suuberg 1993. Chemisorption of nitric oxide on char. 1. Reversible nitric oxide sorption. J Phys Chem 97 (2):478–83. doi:10.1021/j100104a033.
  • Wang, Y., Y. Li, W. Zhang, X. Ma, and Z. Wang 2021. The effect of Cu on NO reduction by char with density functional theory in carbonation stage of calcium looping. Fuel 283:119332. doi:10.1016/j.fuel.2020.119332.
  • Wang, S., Y. Niu, T. Li, and D. Wang 2020. Experimental and kinetic study on the transformation of coal nitrogen in the preheating stage of preheating-combustion coupling process. Fuel 275:117924. doi:10.1016/j.fuel.2020.117924.
  • Wei, L., B. Cui, L. Guo, and Y. Sun 2021a. Effect of sodium on three-phase nitrogen transformation during coal pyrolysis: A qualitative and semi-quantitative investigation. Fuel Process Technol 213:106638. doi:10.1016/j.fuproc.2020.106638.
  • Wei, L., Y. Li, B. Cui, and X. Yang 2021b. Effect of mineral extraction on the evolution of nitrogen functionalities during coal pyrolysis. Fuel 297:120752. doi:10.1016/j.fuel.2021.120752.
  • Weng, Y., W. Cai, and C. Wang 2021. Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060. Appl. Energy 299:117263. doi:10.1016/j.apenergy.2021.117263.
  • Xu, M., S. Li, Y. Wu, and L. Jia 2017a. Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters. Appl. Energy 199:310–22. doi:10.1016/j.apenergy.2017.05.028.
  • Xu, M., S. Li, Y. Wu, L. Jia, and Q. Lu 2017b. The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion. Appl. Energy 190:553–62. doi:10.1016/j.apenergy.2016.12.073.
  • Yamashita, H., A. Tomita, H. Yamada, T. Kyotani, and L. R. Radovic 1993. Influence of char surface chemistry on the reduction of nitric oxide with chars. Energy Fuels 7 (1):85–89. doi:10.1021/ef00037a014.
  • Yan, J., Z. Lei, Z. Li, Z. Wang, S. Ren, S. Kang, and H. Shui 2020. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 268:117038. doi:10.1016/j.fuel.2020.117038.
  • Yan, W., S. Li, C. Fan, and S. Deng 2017. Effect of surface carbon-oxygen complexes during NO reduction by coal char. Fuel 204:40–46. doi:10.1016/j.fuel.2017.05.045.
  • Yang, W., Z. Gao, X. Liu, C. Ma, X. Ding, and W. Yan 2019. Directly catalytic reduction of NO without NH3 by single atom iron catalyst: A DFT calculation. Fuel 243:262–70. doi:10.1016/j.fuel.2019.01.125.
  • Yang, J., G. Mestl, D. Herein, R. Schlögl, and J. Find 2000a. Reaction of NO with carbonaceous materials: 2. Effect of oxygen on the reaction of NO with ashless carbon black. Carbon 38 (5):729–40. doi:10.1016/S0140-6701(00)94358-3.
  • Yang, W., J. Ren, H. Zhang, J. Li, C. Wu, I. D. Gates, and Z. Gao 2021. Single-Atom iron as a promising low-temperature catalyst for selective catalytic reduction of NOx with NH3: A theoretical prediction. Fuel 302:121041. doi:10.1016/j.fuel.2021.121041.
  • Yang, J., E. Sanchez-Cortezon, N. Pfänder, U. Wild, G. Mestl, J. Find, and R. Schlögl 2000b. Reaction of NO with carbonaceous materials: III. Influence of the structure of the materials. Carbon 38 (14):2029–39. doi:10.1016/S0008-6223(00)00062-2.
  • Yang, J., S. Yuan, S. Wang, M. Yang, B. Shen, Q. Zhang, and Z. Wang 2020. Density functional theory study on the effect of sodium on the adsorption of NO on a char surface. Energy Fuels 34 (7):8726–31. doi:10.1021/acs.energyfuels.0c00987.
  • Yang, W., J. Zhou, Z. Zhou, Z. Lu, Z. Wang, J. Liu, and K. Cen 2008. Characteristics of sodium compounds on NO reduction at high temperature in NOx control technologies. Fuel Process. Technol. 89 (12):1317–23. doi:10.1016/j.fuproc.2008.06.002.
  • Yuan, M., C. A. Wang, L. Zhao, P. Wang, C. Wang, and D. Che 2020. Experimental and kinetics study of NO heterogeneous reduction by the blends of pyrolyzed and gasified semi-coke. Energy 207:118260. doi:10.1016/j.energy.2020.118260.
  • Zhang, H., X. Jiang, J. Liu, and J. Shen 2014. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups. Energy Convers. Manage. 83:167–76. doi:10.1016/j.enconman.2014.03.067.
  • Zhang, W., Y. Li, B. Li, Y. Wang, Y. Qian, and Z. Wang 2020a. Simultaneous NO/CO2 removal by Cu-modified biochar/cao in carbonation step of calcium looping process. Chem Eng J 392:123659. doi:10.1016/j.cej.2019.123659.
  • Zhang, H., J. Liu, J. Liu, L. Luo, and X. Jiang 2018. DFT study on the alternative NH3 formation path and its functional group effect. Fuel 214:108–14. doi:10.1016/j.fuel.2017.11.001.
  • Zhang, H., J. Liu, J. Shen, and X. Jiang 2015. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char (N)(char bound nitrogen) in coal combustion. Energy 82:312–21. doi:10.1016/j.energy.2015.01.040.
  • Zhang, X., M. Xie, H. Wu, X. Lv, and Z. Zhou 2020b. DFT study of the effect of Ca on NO heterogeneous reduction by char. Fuel 265:116995. doi:10.1016/j.fuel.2019.116995.
  • Zhang, Y., J. Zhang, C. Sheng, J. Chen, Y. Liu, L. Zhao, and F. Xie 2011. X-Ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres. Energy Fuels 25 (1):240–45. doi:10.1021/ef101134a.
  • Zhao, Y., D. Feng, B. Li, P. Wang, H. Tan, and S. Sun 2019. Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-Char interaction at high temperatures. Energy 174:519–25. doi:10.1016/j.energy.2019.02.156.
  • Zhao, Z., W. Li, J. Qiu, and B. Li 2002. Catalytic effect of Na–Fe on NO–char reaction and NO emission during coal char combustion. Fuel 81 (18):2343–48. doi:10.1016/S0016-2361(02)00174-6.
  • Zhao, D., H. Liu, P. Lu, B. Sun, S. Guo, and M. Qin 2021a. DFT study of the catalytic effect of Fe on the gasification of char-CO2. Fuel 292:120203. doi:10.1016/j.fuel.2021.120203.
  • Zhao, T., W. Song, C. Fan, S. Li, P. Glarborg, and X. Yao 2018. Density functional theory study of the role of an carbon–oxygen single bond group in the NO–char reaction. Energy Fuels 32 (7):7734–44. doi:10.1021/acs.energyfuels.8b01124.
  • Zhao, L., M. Yuan, C. Wang, P. Wang, Y. Du, and D. Che 2021b. NO heterogeneous reduction on semi-coke and residual carbon with the presence of O2 and CO. Fuel 283:118954. doi:10.1016/j.fuel.2020.118954.
  • Zhong, B. J., and H. Tang 2007. Catalytic NO reduction at high temperature by de-ashed chars with catalysts. Combust Flame 149 (1–2):234–43. doi:10.1016/j.combustflame.2006.04.004.
  • Zhu, X., L. Zhang, M. Zhang, and C. Ma 2019. Effect of N-doping on NO2 adsorption and reduction over activated carbon: An experimental and computational study. Fuel 258:116109. doi:10.1016/j.fuel.2019.116109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.